forked from Sierkinhane/human_tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
59 lines (47 loc) · 1.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
author: Sierkinhane
since: 2019-2-22 11:12:23
description:simple human tracker -- based on center loss
"""
lr = 0.001
MAX_EPOCH = 200
DISPLAY = 1
BATCH_SIZE = 128
SHUFFLE = True
NUM_WORKERS = 3
RESUME = ''
import torch
from dataset import *
from face_models import Resnet18FaceModel, Resnet50FaceModel
from trainer import Trainer
# thanks to
def model_info(model): # Plots a line-by-line description of a PyTorch model
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
print('\n%5s %50s %9s %12s %20s %12s %12s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %50s %9s %12g %20s %12.3g %12.3g' % (
i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
print('Model Summary: %g layers, %g parameters, %g gradients\n' % (i + 1, n_p, n_g))
def train(model, dataloader, device):
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr, momentum=0.9)
model_info(model)
trainloader, validloader = dataloader
trainer = Trainer(
optimizer,
model,
trainloader,
validloader,
max_epoch=MAX_EPOCH,
resume=RESUME,
device=device,
)
trainer.train()
if __name__ == '__main__':
dataset = Data(data_dir='./train_data/train_for_center_loss_market_cuhk')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
dataloader, num_classes = dataset.getDataloader(batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, shuffle=SHUFFLE)
model = Resnet18FaceModel(num_classes).to(device)
print("loaded {} classes".format(num_classes))
train(model, dataloader, device)