-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathps_async_mp.py
207 lines (174 loc) · 6.78 KB
/
ps_async_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sys
import cPickle as pickle
import socket
from multiprocessing import Process, Queue, Value, Manager
from ctypes import c_char_p
from datetime import datetime
import time
import tensorflow as tf
import cifar10
TCP_IP = '127.0.0.1'
s = 0
MAX_WORKERS = 0
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('train_dir', '/home/ubuntu/cifar10_train',
"""Directory where to write event logs """
"""and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', 100002,
"""Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""")
tf.app.flags.DEFINE_integer('log_frequency', 1000,
"""How often to log results to the console.""")
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.25)
def safe_recv(size, server_socket):
data = ''
temp = ''
recv_size = 0
while 1:
try:
temp = server_socket.recv(size-len(data))
data += temp
recv_size = len(data)
if recv_size >= size:
break
except:
print("Error")
return data
def handleWorker(port,gradients_q,global_var_vals):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print("Connecting to port : ", port)
s.bind((TCP_IP, port))
s.listen(1)
while 1:
conn, addr = s.accept()
#print('Connection address:', addr)
size = safe_recv(8,conn)
size = pickle.loads(size)
data = safe_recv(size,conn)
#print("Received size: ", size)
local_worker_gradients = pickle.loads(data)
gradients_q.put(local_worker_gradients)
size = len(global_var_vals.value)
#print("Global var val size: ", size)
size = pickle.dumps(size, pickle.HIGHEST_PROTOCOL)
conn.sendall(size)
conn.sendall(global_var_vals.value)
conn.close()
s.close()
def train():
"""Train CIFAR-10 for a number of steps."""
g1 = tf.Graph()
with g1.as_default():
# Build a Graph that trains the model with one batch of examples and
# updates the model parameters.
#global_step = tf.contrib.framework.get_or_create_global_step()
global_step = tf.Variable(-1, name='global_step', trainable=False, dtype=tf.int32)
increment_global_step_op = tf.assign(global_step, global_step+1)
cifar10.build_graph()
placeholder_gradients = []
#with tf.device("/gpu:0"):
for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
placeholder_gradients.append((tf.placeholder('float', shape=var.get_shape()) ,var))
feed_dict = {}
i=0
for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
feed_dict[placeholder_gradients[i][0]] = np.zeros(placeholder_gradients[i][0].shape)
i=i+1
train_op = cifar10.train_part2(global_step,placeholder_gradients)
class _LoggerHook(tf.train.SessionRunHook):
"""Logs loss and runtime."""
def begin(self):
self._step = -1
self._start_time = time.time()
def before_run(self, run_context):
self._step += 1
def after_run(self, run_context, run_values):
if self._step % FLAGS.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
sec_per_batch = float(duration / FLAGS.log_frequency)
format_str = ('%s: step %d,(%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), self._step,
examples_per_sec, sec_per_batch))
with tf.train.MonitoredTrainingSession(
checkpoint_dir=FLAGS.train_dir,
hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
_LoggerHook()],
config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement, gpu_options=gpu_options)) as mon_sess:
for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
print(v)
# Sending the initial value of variables
var_val = []
for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
var_val.append(mon_sess.run(v, feed_dict=feed_dict))
send_data = pickle.dumps(var_val, pickle.HIGHEST_PROTOCOL)
global global_var_vals
global_var_vals.value = send_data
size = len(send_data)
size = pickle.dumps(size, pickle.HIGHEST_PROTOCOL)
for i in xrange(MAX_WORKERS):
conn, addr = s.accept()
conn.sendall(size)
conn.sendall(send_data)
conn.close()
print("Sent initial var values to workers")
while not mon_sess.should_stop():
val = mon_sess.run(global_step, feed_dict=feed_dict)
#print("Iteration: ", val)
if(val == (FLAGS.max_steps - 1)):
print("Global step val while stoping.")
sys.exit()
recv_grads = gradients_q.get()
#print("received gradients from worker")
feed_dict = {}
for i,grad_var in enumerate(recv_grads):
feed_dict[placeholder_gradients[i][0]] = recv_grads[i]
res = mon_sess.run(train_op, feed_dict=feed_dict)
var_val = []
#print("Run complete with new values")
for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
var_val.append(mon_sess.run(v, feed_dict=feed_dict))
global global_var_vals
global_var_vals.value = pickle.dumps(var_val, pickle.HIGHEST_PROTOCOL)
#print("New values of variables sent ")
def main(argv=None): # pylint: disable=unused-argument
if(len(sys.argv) != 3):
print("Port number and no of workers required")
sys.exit()
global s
global port
global MAX_WORKERS
port = int(sys.argv[1])
MAX_WORKERS = int(sys.argv[2])
global gradients_q
global global_var_vals
gradients_q = Queue()
manager = Manager()
global_var_vals = manager.Value(c_char_p, "")
for i in xrange(MAX_WORKERS):
process_port = port + i + 1
p = Process(target=handleWorker, args=(process_port,gradients_q,global_var_vals))
p.daemon = True
p.start()
cifar10.maybe_download_and_extract()
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
total_start_time = time.time()
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print("Connecting to port : ", port, " and no of workers: ", MAX_WORKERS)
s.bind((TCP_IP, port))
s.listen(1)
train()
print("--- %s seconds ---" % (time.time() - total_start_time))
if __name__ == '__main__':
tf.app.run()