-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10_train_multips_async.py
216 lines (183 loc) · 6.87 KB
/
cifar10_train_multips_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sys
import cPickle as pickle
import socket
from datetime import datetime
import time
import tensorflow as tf
import cifar10
TCP_IP = '127.0.0.1'
TCP_PORT = 5014
port_ps1 = 0
port_ps2 = 0
port_main_1 = 0
port_main_2 = 0
s = 0
half_index = 5
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('train_dir', '/home/ubuntu/cifar10_train',
"""Directory where to write event logs """
"""and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', 50000,
"""Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""")
tf.app.flags.DEFINE_integer('log_frequency', 10,
"""How often to log results to the console.""")
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.20)
def safe_recv(size, server_socket):
data = ''
temp = ''
recv_size = 0
while 1:
try:
temp = server_socket.recv(size-len(data))
data += temp
recv_size = len(data)
if recv_size >= size:
break
except:
print("Error")
return data
def train():
"""Train CIFAR-10 for a number of steps."""
g1 = tf.Graph()
with g1.as_default():
#global_step = tf.contrib.framework.get_or_create_global_step()
global_step = tf.Variable(-1, name='global_step', trainable=False, dtype=tf.int32)
increment_global_step_op = tf.assign(global_step, global_step+1)
# Get images and labels for CIFAR-10.
images, labels = cifar10.distorted_inputs()
# Build a Graph that computes the logits predictions from the
# inference model.
logits = cifar10.inference(images)
# Calculate loss.
loss = cifar10.loss(logits, labels)
grads = cifar10.train_part1(loss, global_step)
only_gradients = [g for g,_ in grads]
class _LoggerHook(tf.train.SessionRunHook):
"""Logs loss and runtime."""
def begin(self):
self._step = -1
self._start_time = time.time()
def before_run(self, run_context):
self._step += 1
return tf.train.SessionRunArgs(loss) # Asks for loss value.
def after_run(self, run_context, run_values):
if self._step % FLAGS.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
loss_value = run_values.results
examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
sec_per_batch = float(duration / FLAGS.log_frequency)
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), self._step, loss_value,
examples_per_sec, sec_per_batch))
with tf.train.MonitoredTrainingSession(
checkpoint_dir=FLAGS.train_dir,
hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
tf.train.NanTensorHook(loss),
_LoggerHook()],
config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement, gpu_options=gpu_options)) as mon_sess:
# Getting first set of variables
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((TCP_IP, port_main_1))
recv_size = safe_recv(8, s)
recv_size = pickle.loads(recv_size)
recv_data = safe_recv(recv_size, s)
var_vals_1 = pickle.loads(recv_data)
s.close()
# Getting second set of variables
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((TCP_IP, port_main_2))
recv_size = safe_recv(8, s)
recv_size = pickle.loads(recv_size)
recv_data = safe_recv(recv_size, s)
var_vals_2 = pickle.loads(recv_data)
s.close()
feed_dict = {}
i=0
for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
if(i < half_index):
feed_dict[v] = var_vals_1[i]
else:
feed_dict[v] = var_vals_2[i-half_index]
i=i+1
print("Received variable values from ps")
s1 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s1.connect((TCP_IP, port_ps1))
s2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s2.connect((TCP_IP, port_ps2))
print("Connected to both PSs")
while not mon_sess.should_stop():
gradients, step_val = mon_sess.run([only_gradients,increment_global_step_op], feed_dict=feed_dict)
#print("Sending grads port: ", port)
# Opening the socket and connecting to server
# sending the gradients
grad_part1 = []
grad_part2 = []
i=0
for g in gradients:
if(i < half_index):
grad_part1.append(g)
else:
grad_part2.append(g)
i=i+1
send_data_1 = pickle.dumps(grad_part1,pickle.HIGHEST_PROTOCOL)
to_send_size_1 = len(send_data_1)
send_size_1 = pickle.dumps(to_send_size_1, pickle.HIGHEST_PROTOCOL)
s1.sendall(send_size_1)
s1.sendall(send_data_1)
send_data_2 = pickle.dumps(grad_part2,pickle.HIGHEST_PROTOCOL)
to_send_size_2 = len(send_data_2)
send_size_2 = pickle.dumps(to_send_size_2, pickle.HIGHEST_PROTOCOL)
s2.sendall(send_size_2)
s2.sendall(send_data_2)
#print("sent grads")
#receiving the variable values
recv_size = safe_recv(8, s1)
recv_size = pickle.loads(recv_size)
recv_data = safe_recv(recv_size, s1)
var_vals_1 = pickle.loads(recv_data)
recv_size = safe_recv(8, s2)
recv_size = pickle.loads(recv_size)
recv_data = safe_recv(recv_size, s2)
var_vals_2 = pickle.loads(recv_data)
#print("recved grads")
feed_dict = {}
i=0
for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
if(i < half_index):
feed_dict[v] = var_vals_1[i]
else:
feed_dict[v] = var_vals_2[i-half_index]
i=i+1
s1.close()
s2.close()
def main(argv=None): # pylint: disable=unused-argument
global port_ps1
global port_ps2
global port_main_1
global port_main_2
if(len(sys.argv) != 4):
print("<port ps 1> <port ps 2> <worker-id> required")
sys.exit()
port_ps1 = int(sys.argv[1]) + int(sys.argv[3])
port_ps2 = int(sys.argv[2]) + int(sys.argv[3])
port_main_1 = int(sys.argv[1])
port_main_2 = int(sys.argv[2])
cifar10.maybe_download_and_extract()
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
total_start_time = time.time()
train()
print("--- %s seconds ---" % (time.time() - total_start_time))
if __name__ == '__main__':
tf.app.run()