-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjsonToLabels.py
123 lines (110 loc) · 4.07 KB
/
jsonToLabels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import json
import os
import re
from pathlib import Path
from argparse import ArgumentParser
# Process all files in {src} of expension {exp}
def process_exp(exp, src, dest):
llm_responses = os.listdir(src)
print("Total #files in dir: " + str(len(llm_responses)))
# only look for files matching this pattern alone ($ avoids substring matches)
regex = re.escape(exp) + r"$"
relevant_files = list(
filter(lambda f_name: re.search(regex, f_name), llm_responses)
)
print("# files with exp: " + str(len(relevant_files)))
# Track the failed json parses
failures = []
output = "docref_id,label\n"
for f_name in relevant_files:
f_id = f_name.split(".")[0]
try:
# Open this file
file_path = os.path.join(src, f_name)
with open(file_path, "r") as fp:
text = fp.read()
# Try parsing some JSON off the text
json_excerpt = re.search(r"\{[\w|\W]*\}", text)
file_json = json.loads(json_excerpt[0])
# Track if we have a blank JSON object by some chance, or if all values are false
is_blank = True
for k, v in file_json.items():
if v:
is_blank = False
# Add a row for each positive symptom mention
# NOTE: this adds rows for irrelevant symptoms; no validation
output += f"{f_id},{k}\n"
# Add an empty row if all symptoms are false or if JSON is empty
if is_blank:
output += f"{f_id},\n"
except Exception as e:
# Any files we fail to parse JSON for should have a blank row
print(f"> Could not parse valid json from {f_name}")
print(str(e))
output += f"{f_id},\n"
# Track failures
failures.append(f_name)
with open(Path(f"{dest}/{exp}.csv").resolve(), "w") as fp:
fp.write(output)
if len(failures) > 0:
print("# failing documents: ", str(len(failures)) + "\n")
with open(Path(f"{dest}/{exp}-failures.json"), "w") as fp:
fp.write(json.dumps(failures))
return failures
def main(experiments, src, dest):
all_failures = {}
experiments = [exp.strip() for exp in experiments]
for exp in experiments:
print("===============================")
print("Processing exp: " + exp)
print("===============================")
# Process_exp returns failures
all_failures[exp] = process_exp(exp, src, dest)
print()
print("===============================")
print("# All Failures: ")
print("===============================")
print(json.dumps(all_failures, indent=4))
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"-e",
"--experiments",
dest="experiments",
help="Comma-separated list of strategies to generate labels for",
)
parser.add_argument(
"-s",
"--src",
dest="src",
default="./data/responses",
help="Directory containing LLM responses to process; relative or absolute paths should work",
)
parser.add_argument(
"-d",
"--dest",
dest="dest",
default="./data/",
help="Where the pipeline instructions file will be written",
)
args = parser.parse_args()
if not args.experiments:
print("Must provide (1 or many) experiments to process. See below:\n ")
parser.print_help()
exit(1)
experiments = re.split(r"\s*,\s*", args.experiments)
try:
src = Path(f"{args.src}").resolve()
except:
print(
f"Could not resolve --src of {args.src}; make sure this directory contains your LLM responses."
)
parser.print_help()
exit(1)
try:
dest = Path(f"{args.dest}").resolve()
except:
print(f"Could not resolve --dest {args.dest}; make sure this directory exists")
parser.print_help()
exit(1)
main(experiments, src, dest)