-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsinusoidfit.nb
1632 lines (1593 loc) · 77.9 KB
/
sinusoidfit.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 79562, 1624]
NotebookOptionsPosition[ 76808, 1572]
NotebookOutlinePosition[ 77200, 1589]
CellTagsIndexPosition[ 77157, 1586]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["Import the data:", "Text",
CellChangeTimes->{{3.780328919857655*^9,
3.7803289213577623`*^9}},ExpressionUUID->"11cd79f8-9227-4500-870c-\
6645d85df614"],
Cell[BoxData[
RowBox[{
RowBox[{"rxpkp", " ", "=", " ",
RowBox[{
RowBox[{"Import", "[", "\"\<~/Desktop/underfive.csv\>\"", "]"}],
"\[LeftDoubleBracket]",
RowBox[{"2", ";;"}], "\[RightDoubleBracket]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.780311091273493*^9, 3.780311120314687*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"8ff1e2d9-3202-42ef-a6eb-e8fc5a45daeb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"rxpkp", "\[LeftDoubleBracket]",
RowBox[{"Range", "[",
RowBox[{"1", ",", "10"}], "]"}], "\[RightDoubleBracket]"}]], "Input",
CellChangeTimes->{{3.780764943198806*^9, 3.7807649641976767`*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"d5e82c4e-39e4-435a-b334-40df3347b255"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "177.100029166143`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "180.678928163356`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "181.387453796488`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "162.500560019607`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "138.025356368653`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "107.406577473143`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "84.2725712739036`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "76.7897382561969`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "80.8254469117813`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "109.721306154925`"}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.780764944461258*^9, 3.780764971427022*^9}},
CellLabel->"Out[5]=",ExpressionUUID->"49cf00c5-d697-47bc-8565-d94c793abb89"]
}, Open ]],
Cell["Plot the data:", "Text",
CellChangeTimes->{{3.78032892374165*^9,
3.780328926237708*^9}},ExpressionUUID->"7b73f577-8299-4b96-bcac-\
0072a5d7f994"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{"rxpkp", ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}], "}"}]}], ",",
" ",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Months since 1 Jan 2011\>\"", ",",
"\"\<Prescriptions per 1,000 beneficiaries\>\""}], "}"}]}], ",", " ",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"FontSize", "\[Rule]", "12"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.780311121461965*^9, 3.7803111288612137`*^9}, {
3.7803292520006113`*^9, 3.7803292555926323`*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"93256b84-29d1-400a-89c0-78dc4c7b60bd"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
StyleBox[PointBox[CompressedData["
1:eJw10mtIU2EYB/ClGZrlzAsJXbyV2ZjlNs2mS//T6Zwz7zkt11Jy0IfKLPRL
2JFmudSpH1YrRxZkEmomwSy8lVkZgkal2RIpNCSJSqaBglDh8x44HH78zznv
8zzvG1h0NqvYicfjSf/d/5/s0rVqSyTBeqzpd1xmrOn1UzMzD54+lS76dmZX
2GSl19dnnCR7oupF6JMxFJJ9EGit0rrYj5L98HBsePTcliPk7XDqyvaqEWeT
AzDeluz/ISKHHATr+ZSve88cI+/Cyg+dfd5YRA7BmDS9Qi1g9YRC0GWamDEX
kwXQr3u74AhiuRAeGLq9IGXf78PqpFOi4ZuOHI7IHc6q3Gv5ZBGmQu/3ff6k
IYshbTY8KF3MIkswP+3esuDIIEfA17voVe/LTHIkmtre2wrvsv4PIIF3Wl71
jK0XhRC/3o8hb1i9B2Fv5Ie1d7L6pLDUrziMj4+To9Gw2aKp7zxBjoFvafdy
TAnLZXi0UTQiH2D1HoLt5rCrJIfNMxb+8EoLnmbzjsPzK7sVmYo0MjC0ys0N
rKaumQN4kj0dglvseznm8vPE4kr6PyeH1cPSXL5UQHk8NLO2wZY+6peLh3Am
Stvlm0d5AvSz1V/Kymk/uQQI3UWj2jA2HwUaFjc18QtyKVfgzsgvVfYGtn4i
wu2nKqz8dMoTESC5JMvSqShPQl1H+raLGtoPLgnOV73HHXzWrxJaefWgIYrV
r8TPGj9D/h82z2SEKbsLeuponlwyHLUTy8J+dl5VML1L8irpoH45FUTG/fZ+
JTufKdhqmagtc6P3uRQ0rUQOTZnZeVGjtX+u557bYcrVuLw02SK7wepPhXnn
9+gLNjX+AqBU7XM=
"]],
FontSize->12]}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6],
StyleBox[{},
FontSize->12]}, {}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6],
StyleBox[{},
FontSize->12]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->(FontSize -> 12),
DisplayFunction->Identity,
Frame->{{True, False}, {True, False}},
FrameLabel->{{
FormBox["\"Prescriptions per 1,000 beneficiaries\"", TraditionalForm],
None}, {
FormBox["\"Months since 1 Jan 2011\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 56.}, {0, 181.387453796488}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.7803111236461554`*^9, 3.780311129067902*^9}, {
3.780329255876862*^9, 3.780329267691407*^9}, 3.780754917974091*^9,
3.780764971629076*^9},
CellLabel->"Out[6]=",ExpressionUUID->"79d45a89-4d18-4b74-b4a3-40e16d231e43"]
}, Open ]],
Cell["\<\
Fit the sinusoid:
\[Beta]0: intercept of the upper trend line (peak monthly prescribing rate \
per 1,000 beneficiaries)
\[Beta]1: slope of the upper trend line (peak monthly prescribing rate per \
1,000 beneficiaries)
\[Gamma]0: intercept of the lower trend line (trough monthly prescribing rate \
per 1,000 beneficiaries)
\[Gamma]1: slope of the lower trend line (trough monthly prescribing rate per \
1,000 beneficiaries)
\[Delta]: phase shift of the sinusoid\
\>", "Text",
CellChangeTimes->{{3.780328942043214*^9, 3.78032894497799*^9}, {
3.780329047639587*^9,
3.780329132859333*^9}},ExpressionUUID->"c9fff56d-9188-44ee-b07c-\
753af973aace"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"upper", "[", "x_", "]"}], " ", ":=", " ",
RowBox[{"\[Beta]0", " ", "+", " ",
RowBox[{"\[Beta]1", " ", "x"}]}]}], " ", ";"}], " ",
RowBox[{"(*",
RowBox[{"The", " ", "upper", " ", "trend", " ", "line"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"lower", "[", "x_", "]"}], " ", ":=", " ",
RowBox[{"\[Gamma]0", " ", "+", " ",
RowBox[{"\[Gamma]1", " ", "x"}]}]}], " ", ";"}], " ",
RowBox[{"(*",
RowBox[{"The", " ", "lower", " ", "trend", " ", "line"}],
"*)"}]}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{
3.780311158383062*^9, {3.780311587067911*^9, 3.780311599217207*^9}, {
3.7803116921056213`*^9, 3.780311697090094*^9}, {3.780329028212422*^9,
3.780329044375918*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"709e00e3-426c-4e47-95cd-a95d8703c5ec"],
Cell[BoxData[
RowBox[{
RowBox[{"fit", " ", "=", " ",
RowBox[{"NonlinearModelFit", "[",
RowBox[{"rxpkp", ",", " ",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"upper", "[", "x", "]"}], " ", "+", " ",
RowBox[{"lower", "[", "x", "]"}]}], ")"}]}], " ", "+", " ",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"upper", "[", "x", "]"}], " ", "-", " ",
RowBox[{"lower", "[", "x", "]"}]}], ")"}],
RowBox[{"(", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox[
RowBox[{"2", " ", "\[Pi]"}], "12"], " ",
RowBox[{"(",
RowBox[{"x", " ", "-", " ", "\[Delta]"}], ")"}]}], "]"}], " ",
")"}]}]}], "\[IndentingNewLine]", "}"}], ",",
RowBox[{"{",
RowBox[{
"\[Beta]0", ",", " ", "\[Beta]1", ",", " ", "\[Gamma]0", ",",
"\[Gamma]1", ",", " ", "\[Delta]"}], "}"}], ",", "x"}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.759681047812801*^9, 3.759681187295149*^9}, {
3.7596812593262463`*^9, 3.759681358131078*^9}, {3.759681494647621*^9,
3.759681495531201*^9}, {3.759681655312439*^9, 3.75968165643321*^9}, {
3.759683059928749*^9, 3.759683059933752*^9}, {3.759842362733137*^9,
3.759842397439089*^9}, {3.75984242830186*^9, 3.759842469729225*^9}, {
3.7598426427659693`*^9, 3.759842668596736*^9}, {3.7598427127161922`*^9,
3.759842717080122*^9}, 3.759843151476528*^9, {3.759843280066828*^9,
3.7598432855386267`*^9}, {3.759843365449246*^9, 3.7598433689697657`*^9}, {
3.759843740059422*^9, 3.75984374171166*^9}, {3.7598437828195753`*^9,
3.759843787166737*^9}, {3.759843837634344*^9, 3.759843840368548*^9}, {
3.759844131770709*^9, 3.7598441589783897`*^9}, {3.759844280895616*^9,
3.759844309386394*^9}, {3.7598443531937943`*^9, 3.759844355307242*^9}, {
3.759846780520554*^9, 3.759846782543343*^9}, {3.759846818719576*^9,
3.7598468202750683`*^9}, {3.7598468764290953`*^9, 3.75984691926075*^9}, {
3.759846957574574*^9, 3.7598469583854094`*^9}, {3.759846990895483*^9,
3.759846996178936*^9}, {3.759847039491178*^9, 3.759847041678632*^9}, {
3.7598471379750547`*^9, 3.759847171873703*^9}, {3.780311167034487*^9,
3.7803111674175043`*^9}, {3.7803116138882723`*^9, 3.780311618189713*^9}, {
3.7803117001811666`*^9, 3.780311703762512*^9}},
CellLabel->"In[9]:=",ExpressionUUID->"d1519689-7f97-404b-bc30-a3b7626c6433"],
Cell[CellGroupData[{
Cell[BoxData["fit"], "Input",
CellChangeTimes->{{3.7803111693307447`*^9, 3.7803111695703506`*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"007435b0-5dc5-4803-84df-1dd14da28200"],
Cell[BoxData[
TagBox[
RowBox[{"FittedModel", "[",
TagBox[
PanelBox[
TagBox[
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"274.493667491759`", "\[VeryThinSpace]", "-",
RowBox[{"2.2104524735672104`", " ", "x"}]}], ")"}]}], "+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"108.27454279761581`", "\[VeryThinSpace]", "-",
RowBox[{"1.1666750218022175`", " ", "x"}]}], ")"}], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["1", "6"], " ", "\[Pi]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "0.6580586293481027`"}], "+", "x"}], ")"}]}],
"]"}]}]}],
Short[#, 2]& ],
FrameMargins->5],
Editable -> False], "]"}],
InterpretTemplate[
FittedModel[{
"Nonlinear", {$CellContext`\[Beta]0 ->
191.38410514468742`, $CellContext`\[Beta]1 -> -1.688563747684714, \
$CellContext`\[Gamma]0 ->
83.10956234707162, $CellContext`\[Gamma]1 -> -0.5218887258824966, \
$CellContext`\[Delta] -> 0.6580586293481027}, {{$CellContext`x}, {
Rational[1,
2] ($CellContext`\[Beta]0 + $CellContext`x $CellContext`\[Beta]1 + \
$CellContext`\[Gamma]0 + $CellContext`x $CellContext`\[Gamma]1) +
Rational[
1, 2] ($CellContext`\[Beta]0 + $CellContext`x $CellContext`\[Beta]1 - \
$CellContext`\[Gamma]0 - $CellContext`x $CellContext`\[Gamma]1)
Cos[Rational[1, 6] Pi ($CellContext`x - $CellContext`\[Delta])]}}}, {
1}, {{0, 177.100029166143}, {1, 180.678928163356}, {
2, 181.387453796488}, {3, 162.500560019607}, {4, 138.025356368653}, {
5, 107.406577473143}, {6, 84.2725712739036}, {7, 76.7897382561969}, {
8, 80.8254469117813}, {9, 109.721306154925}, {10, 148.309918582301}, {
11, 177.321715502489}, {12, 172.684062269874}, {13, 177.092278391133}, {
14, 145.810744651128}, {15, 127.586198094159}, {16, 102.161516430894}, {
17, 95.4040369150784}, {18, 75.8194984240662}, {19, 67.8116238227773}, {
20, 71.0896469075927}, {21, 106.521588999471}, {22, 127.008133274504}, {
23, 174.285991542217}, {24, 149.489767580423}, {25, 122.805294985474}, {
26, 133.486247822741}, {27, 121.753660611292}, {28, 94.9883907298015}, {
29, 81.3156148871411}, {30, 79.470904844115}, {31, 60.5337300475344}, {
32, 57.982418954834}, {33, 82.4088547594838}, {34, 94.0186887610249}, {
35, 115.835426233762}, {36, 106.963242224317}, {37, 96.3389504476333}, {
38, 109.86663068169}, {39, 104.708850429434}, {40, 89.4384524942891}, {
41, 80.0988335458519}, {42, 62.1219633118493}, {43, 50.7446971531956}, {
44, 65.3669498708825}, {45, 76.2492573443124}, {46, 92.867478020727}, {
47, 135.698427246039}, {48, 122.214560679419}, {49, 86.971495112917}, {
50, 114.709965294993}, {51, 109.121023699209}, {52, 84.1478607268949}, {
53, 74.3415995146883}, {54, 58.0753397828642}, {55, 51.1815383252497}, {
56, 55.425422061756}},
Function[Null,
Internal`LocalizedBlock[{$CellContext`x, $CellContext`\[Beta]0, \
$CellContext`\[Beta]1, $CellContext`\[Gamma]0, $CellContext`\[Gamma]1, \
$CellContext`\[Delta]}, #], {HoldAll}]]& ],
Editable->False,
SelectWithContents->True,
Selectable->True]], "Output",
CellChangeTimes->{3.780311169851282*^9, 3.780311619931525*^9,
3.780311707494029*^9, 3.7807549181625013`*^9, 3.780764971803276*^9},
CellLabel->"Out[10]=",ExpressionUUID->"c2d41275-856a-4906-8a49-fb82db0b07ca"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Normal", "[", "fit", "]"}]], "Input",
CellChangeTimes->{{3.759842482694223*^9, 3.759842484984556*^9}},
CellLabel->"In[11]:=",ExpressionUUID->"5be09fea-83e0-4db4-a42b-52e02e9fcbfd"],
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"274.493667491759`", "\[VeryThinSpace]", "-",
RowBox[{"2.2104524735672104`", " ", "x"}]}], ")"}]}], "+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"108.27454279761581`", "\[VeryThinSpace]", "-",
RowBox[{"1.1666750218022175`", " ", "x"}]}], ")"}], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["1", "6"], " ", "\[Pi]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "0.6580586293481027`"}], "+", "x"}], ")"}]}],
"]"}]}]}]], "Output",
CellChangeTimes->{
3.759842485125215*^9, 3.759842675539864*^9, {3.759842718158935*^9,
3.759842720771875*^9}, 3.7598431587416277`*^9, 3.759843294673781*^9,
3.7598433725681267`*^9, 3.759843712943388*^9, 3.759843743026388*^9,
3.759843792704268*^9, {3.759843841711084*^9, 3.759843851876008*^9},
3.75984401298659*^9, 3.759844160140658*^9, 3.759844195400277*^9,
3.7598443120881433`*^9, 3.7598443574181957`*^9, 3.7598467835998583`*^9,
3.7598468227833*^9, {3.759846866035965*^9, 3.759846920605116*^9}, {
3.7598469554834538`*^9, 3.759846959351151*^9}, {3.7598469975956793`*^9,
3.759847074794235*^9}, {3.759847134638598*^9, 3.759847176894128*^9},
3.75985034615136*^9, 3.780311175678812*^9, 3.780311621243156*^9,
3.780311708635268*^9, 3.780754918172999*^9, 3.7807649718137703`*^9},
CellLabel->"Out[11]=",ExpressionUUID->"42154748-ecbf-4629-8d40-d5b2a01b3965"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"fit", "[", "\"\<BestFitParameters\>\"", "]"}]], "Input",
CellLabel->"In[12]:=",ExpressionUUID->"bd6c834a-d042-49b5-9e82-fcfcb6f90eef"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Beta]0", "\[Rule]", "191.38410514468742`"}], ",",
RowBox[{"\[Beta]1", "\[Rule]",
RowBox[{"-", "1.688563747684714`"}]}], ",",
RowBox[{"\[Gamma]0", "\[Rule]", "83.10956234707162`"}], ",",
RowBox[{"\[Gamma]1", "\[Rule]",
RowBox[{"-", "0.5218887258824966`"}]}], ",",
RowBox[{"\[Delta]", "\[Rule]", "0.6580586293481027`"}]}], "}"}]], "Output",\
CellChangeTimes->{3.780311181373402*^9, 3.780311623781899*^9,
3.780311709660692*^9, 3.780754918228581*^9, 3.780764971854591*^9},
CellLabel->"Out[12]=",ExpressionUUID->"b2c40f78-09f2-40b6-bf96-b43f0176ed3d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"fit", "[", "\"\<ParameterConfidenceIntervalTable\>\"",
"]"}]], "Input",
CellChangeTimes->{{3.780311445480322*^9, 3.780311452879715*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"0ce3a9dd-b2a9-42b2-afda-ebfdd3e950ad"],
Cell[BoxData[
StyleBox[
TagBox[GridBox[{
{"\<\"\"\>", "\<\"Estimate\"\>", "\<\"Standard Error\"\>", \
"\<\"Confidence Interval\"\>"},
{"\[Beta]0", "191.38410514468742`", "5.618960758810273`",
RowBox[{"{",
RowBox[{"180.1088354902538`", ",", "202.65937479912105`"}], "}"}]},
{"\[Beta]1",
RowBox[{"-", "1.688563747684714`"}], "0.18192385126442467`",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.053620662588989`"}], ",",
RowBox[{"-", "1.323506832780439`"}]}], "}"}]},
{"\[Gamma]0", "83.10956234707162`", "6.061446427718242`",
RowBox[{"{",
RowBox[{"70.94638023883823`", ",", "95.272744455305`"}], "}"}]},
{"\[Gamma]1",
RowBox[{"-", "0.5218887258824966`"}], "0.17670548535871003`",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.8764742235144266`"}], ",",
RowBox[{"-", "0.16730322825056654`"}]}], "}"}]},
{"\[Delta]", "0.6580586293481027`", "0.12352848627459838`",
RowBox[{"{",
RowBox[{"0.4101805870310735`", ",", "0.9059366716651318`"}], "}"}]}
},
AutoDelete->False,
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
GridBoxDividers->{
"ColumnsIndexed" -> {2 -> GrayLevel[0.7]},
"RowsIndexed" -> {2 -> GrayLevel[0.7]}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{
"ColumnsIndexed" -> {2 -> 1}, "RowsIndexed" -> {2 -> 0.75}}],
"Grid"], "DialogStyle",
StripOnInput->False]], "Output",
CellChangeTimes->{3.780311453076909*^9, 3.780311626005233*^9,
3.780311710268628*^9, 3.7807549182885447`*^9, 3.780764971902069*^9},
CellLabel->"Out[13]=",ExpressionUUID->"1bc3aca8-b5c4-4ad9-808b-3a9ff8c5cada"]
}, Open ]],
Cell["Plot the output:", "Text",
CellChangeTimes->{{3.780328955521185*^9,
3.780328956834104*^9}},ExpressionUUID->"279f293f-1aa0-4b81-a258-\
537e4c6258f9"],
Cell[BoxData[
RowBox[{
RowBox[{"fitplot", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"fit", "[", "x", "]"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"rxpkp", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], ",",
RowBox[{"rxpkp", "\[LeftDoubleBracket]",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "\[RightDoubleBracket]"}]}], "}"}],
",", " ",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]", "Black"}], ",", " ",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Sinusoid fit\>\"", "}"}]}]}], "]"}]}], ";"}]], "Input",\
CellChangeTimes->{{3.780311898566469*^9, 3.7803119226023903`*^9}, {
3.7807549403487463`*^9, 3.780754942477894*^9}, {3.780755313795076*^9,
3.780755321619722*^9}, {3.780755365743832*^9, 3.780755376338583*^9}, {
3.78075550773825*^9, 3.780755560284651*^9}},
CellLabel->"In[14]:=",ExpressionUUID->"f24254c2-291f-4a42-aa76-766625aaa1e4"],
Cell[BoxData[{
RowBox[{
RowBox[{"upperplot", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"upper", "[", "x", "]"}], "/.",
RowBox[{"fit", "[", "\"\<BestFitParameters\>\"", "]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"rxpkp", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], ",",
RowBox[{"rxpkp", "\[LeftDoubleBracket]",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "\[RightDoubleBracket]"}]}], "}"}],
",", " ",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}], ",", " ",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Envelope\>\"", "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"lowerplot", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"lower", "[", "x", "]"}], "/.",
RowBox[{"fit", "[", "\"\<BestFitParameters\>\"", "]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"rxpkp", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], ",",
RowBox[{"rxpkp", "\[LeftDoubleBracket]",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "\[RightDoubleBracket]"}]}], "}"}],
",", " ",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}]}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.7598427398955517`*^9, 3.759842778569058*^9}, {
3.759842819337276*^9, 3.7598428265947104`*^9}, {3.780311931663191*^9,
3.780311933764134*^9}, {3.780754971531077*^9, 3.780754976282619*^9}, {
3.78075538346294*^9, 3.780755386772932*^9}, {3.7807555447979927`*^9,
3.7807555522439423`*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"fdb29357-a62e-4324-b351-0461366d943f"],
Cell[BoxData[
RowBox[{
RowBox[{"dataplot", " ", "=", " ",
RowBox[{"ListLinePlot", "[",
RowBox[{"rxpkp", ",",
RowBox[{"PlotMarkers", "\[Rule]", "Automatic"}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Gray", "}"}]}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",", " ",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Data\>\"", "}"}]}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.7598425855979156`*^9, 3.759842595546666*^9}, {
3.780311192056984*^9, 3.780311192406061*^9}, {3.780754960310422*^9,
3.780754961853993*^9}, {3.780755566302904*^9, 3.780755569021131*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"45299728-8a06-47fc-8828-38b0d307ea1e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"figunder5sinusoid", " ", "=", " ",
RowBox[{"Show", "[",
RowBox[{
"dataplot", ",", " ", "fitplot", ",", " ", "upperplot", ",", " ",
"lowerplot", ",", " ",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", " ", "Automatic"}], "}"}]}], ",", " ",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}], "}"}]}], ",",
" ",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"None", ",", "\"\<Prescriptions per 1,000\\nbeneficiaries\>\""}],
"}"}]}], ",", " ",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"FontSize", "\[Rule]", "14"}]}], ",", " ",
RowBox[{"ImageSize", "\[Rule]", "400"}], ",", "\[IndentingNewLine]",
RowBox[{"FrameTicks", "->",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "\"\<2011\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", " ", "\"\<2012\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"24", ",", " ", "\"\<2013\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"36", ",", " ", "\"\<2014\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"48", ",", " ", "\"\<2015\>\""}], "}"}]}], "}"}], ",",
"Automatic"}], "}"}]}], ",", " ",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Table", "[",
RowBox[{"i", ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "54", ",", "6"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"50", ",", "100", ",", "150", ",", "200"}], "}"}]}],
"}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.759842781111267*^9, 3.759842782179121*^9}, {
3.759842832794017*^9, 3.759842833798362*^9}, {3.7803118348936567`*^9,
3.780311838347129*^9}, {3.780311871825458*^9, 3.780311872475271*^9}, {
3.780311939257317*^9, 3.780311945263936*^9}, {3.780329177127026*^9,
3.780329223483284*^9}, {3.7807549220209723`*^9, 3.780754936716691*^9}, {
3.780755004402379*^9, 3.780755031340742*^9}, {3.780755107661797*^9,
3.780755108438395*^9}, {3.780755154290203*^9, 3.780755309918984*^9}, {
3.780755585455223*^9, 3.7807555897222977`*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"12e5ed37-6989-487d-a4b1-661fefc2d263"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[
NCache[
Rational[1, 60], 0.016666666666666666`]],
AbsoluteThickness[1.6],
GrayLevel[0.5]],
LineBox[CompressedData["
1:eJw10mtIU2EYB/ClGZrlzAsJXbyV2ZjlNs2mS//T6Zwz7zkt11Jy0IfKLPRL
2JFmudSpH1YrRxZkEmomwSy8lVkZgkal2RIpNCSJSqaBglDh8x44HH78zznv
8zzvG1h0NqvYicfjSf/d/5/s0rVqSyTBeqzpd1xmrOn1UzMzD54+lS76dmZX
2GSl19dnnCR7oupF6JMxFJJ9EGit0rrYj5L98HBsePTcliPk7XDqyvaqEWeT
AzDeluz/ISKHHATr+ZSve88cI+/Cyg+dfd5YRA7BmDS9Qi1g9YRC0GWamDEX
kwXQr3u74AhiuRAeGLq9IGXf78PqpFOi4ZuOHI7IHc6q3Gv5ZBGmQu/3ff6k
IYshbTY8KF3MIkswP+3esuDIIEfA17voVe/LTHIkmtre2wrvsv4PIIF3Wl71
jK0XhRC/3o8hb1i9B2Fv5Ie1d7L6pLDUrziMj4+To9Gw2aKp7zxBjoFvafdy
TAnLZXi0UTQiH2D1HoLt5rCrJIfNMxb+8EoLnmbzjsPzK7sVmYo0MjC0ys0N
rKaumQN4kj0dglvseznm8vPE4kr6PyeH1cPSXL5UQHk8NLO2wZY+6peLh3Am
Stvlm0d5AvSz1V/Kymk/uQQI3UWj2jA2HwUaFjc18QtyKVfgzsgvVfYGtn4i
wu2nKqz8dMoTESC5JMvSqShPQl1H+raLGtoPLgnOV73HHXzWrxJaefWgIYrV
r8TPGj9D/h82z2SEKbsLeuponlwyHLUTy8J+dl5VML1L8irpoH45FUTG/fZ+
JTufKdhqmagtc6P3uRQ0rUQOTZnZeVGjtX+u557bYcrVuLw02SK7wepPhXnn
9+gLNjX+AqBU7XM=
"]]}}, {{
Directive[
PointSize[
NCache[
Rational[1, 60], 0.016666666666666666`]],
AbsoluteThickness[1.6],
GrayLevel[0.5]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[
Rational[1, 60]],
AbsoluteThickness[1.6],
GrayLevel[0.5]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[6.272]], CompressedData["
1:eJxF0mtIU2EYB/CjZmiWMy8kdFGzzMYst2k2XfqfTuecec9puZaSgz5UZqFf
wo40S/Pah9XKkQWZhJpJMAtvZVaGoFFptkQKDUmikmmgICT4vHTg/fDjf855
n+d534CCsxmFThzHyVaXw+py5P4/+hZdkTTQgDX9iUmPrnvzzMTMwcO73NnQ
xuwCq7z4xrq0k2QPVLwMfjqKfLI3AiwVOmfbUbIvHo0OjZzbfIS8DY6dmZ7V
kkyyP8ZaE/0+hmWRd8JyPunb3jPHyLuw/FNvm6sqIAdhVJZaphGyeoIh7Kwb
nzYVkoUwOLybt+9kuQjuGLwzL2Pf78PKhGO88bueHIrw7U7q7Gu5ZDEmgx/0
fvmsJUsgazI+LF7IIEsxN+XWPG9PI4fBx6vgdc+rdHI4Gls/WPPvsf4PII47
rah4zvaLQJBvz6egt6zeg7BdF4S0dbD6ZDDXL9urnhwnR6Jhk1lb33GCHAWf
4q6lqCKWy/F4g3hY0c/qPQTrrSEXaRabZzT84JkSOMXmHYMXV3Yr05UpZGBw
hZ/tX0leMw9w0j3twtvsewVmc3MkknL6P6+Axd3cVLqYR3kstDPWgeZe6peP
hWg6Qtfpk0N5HAwzlV9LSuk8+TiI3MQjuhA2HyUaFjY2CvKyKVfi7vBvdeZ6
tn88Qm2nyiyCVMrj4S+9JM/QqylPQG176taLWjoPPgFOV73G7ALWrwo6ReWA
MYLVr8Kval9j7l82z0SEqLryumtpnnwi7DXjS6I+dl/VqHuf4FnUTv3yaoir
9tv6VOx+JmGLebymxJXe55PQuBw+OGli90WDlr7Z7vuuhynX4PLiRLP8Jqs/
GaYdPyIvWDX4B68g7XU=
"]]}}, {{
Directive[
PointSize[
NCache[
Rational[1, 60], 0.016666666666666666`]],
AbsoluteThickness[1.6],
GrayLevel[0.5]]}, {}}, {{
Directive[
PointSize[
NCache[
Rational[1, 60], 0.016666666666666666`]],
AbsoluteThickness[1.6],
GrayLevel[0.5]]}, {}}}, {{}, {}}}, {{{{}, {},
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
GrayLevel[0]],
LineBox[CompressedData["
1:eJwUl3k8lG8XxhHapLJvyb6vY1+auQzDFA3G2Pc9iSTKViQJLSjR9kMqISIh
iRZEiYpKstMmKVFSWXqf9y+f7+eZ57nPuc51H+dI++1mBnKwsbFVcrKx/f/v
JZfrt9PUbpHjUk8bxKQG48pfoeTLudmUAAGJuIcZwdh+jEv5QO4lyhN154CJ
k8EoepmwGJJ7k2J//1Tfs9xgFPbHVv1bqKWMTNcbnjwfjP/G9gWc8W2guPcN
TankB6Nzv2GQT+5DytUToVyLV4JhvaAP1SctlL2pHTStkmB0HNQT+7XwiJKr
KnjK7How2o+Qnh3z7aCcWvTnXagKhuVq7RKnnE6KxklDqcu3gtF6XDNZuv0Z
pVrgPLtSXTDGtgpdcM/tpoTJNCy3NxDxHBNc9bCyh1IvqsrxrjEYPl0C0QpP
XlKumJ+80n8vGJvXC4wfG39F+cVxZuDGg2AM2/Hbziy8pjQPV/zn3RyM/FN8
jU6Cbyj+lznHp1qC4flqo3KjRh8lMzG50OlRMCSENuZK099Sdmx61n2xLRiD
zhtWHPXtp1y8bb37fnswLp5bHzEVN0C5orJp773HwXAf4B2yzxmk/GaX6Tv3
JBhim3i33a4Yongfmj9n3xGMfq91tyXahynby37XfCD4XCGPXPLoCIW2hazg
9DQYajNHHv9IGKUwb+d/KSKY5xRXYvHqMUqm9Y0VnQRPkY7oueaOUWr67oV1
E9z5knNqrew45V7/iPItgsujUoruVY5TLrsMG+4h+Lggp+se03cUoWcWF9cS
HFp3eL3ck3cUt43uTsnE+ducV7T1Or6n6Ogp7HxNxKvyOzkhffw9ZSRoxwAn
wWvOceiY7v5AUXhceGMDkd+kUfLnbwsfKBm0tZ9/E3p09LMXXkr7SDm4ozCr
idCrNP6QE0vwE6VFXrDcqzUYaRLs61YWfaIMXuunDhJ672hKarmjMUE5Jyjp
qf8wGHQvtrhddycoD1iPV4TdD4bSv0StzfTPlP7HB5DUFIxPSPwvxXeSEldl
Xmx6JxhtY8sOBt8mKa3D5h8/EH4oTj64ZjLuC4VfTGMytCYYQa0H9tvmTFH2
uBTu5a0k/BS4pM4h/ZVC+vpJULU8GPLcB97XVHylaP7Kq5UrDcZ7qwR7sfZv
lJ0/CjUqiwi/TSys7HKYpuicPKCCAuJ+pMffSxydpjxa/2THjQvBqA5sOjOb
8J3yRfrUH5mcYOy51sjhkjtDGQn9WxF+OBgWkokGF8dnKPLb263TDwZD5IzZ
rlGNWcp2sXtj8bHBeJDc9npH+yylvyIo+nN4MHi9XpTE/v5BqdKZ+PLZORjj
r04NNVn8pKzck/yz3T4YddaOfBzZPymyk6k8idaEP4364zOU5yjcD5xXxZKJ
egu8Z1xw+0X5J3HrZqFMMJKOFR8eKf5F2TdYfNNaPBgOHCH1sj9+Ub6fXCXQ
zR+Mv9NfpcuPzVMWtww2hHIGY+vT+Z+Njb8pqktLQx/eBeHjobUXhiUXKOGl
+g/FLgah4XfXc5nQBYrvobkLh08F4eTuLM7g2wuU7Sn8yh1pQdDzFAyftl2k
GPa+sJ6JCkKK4WYztkNLlK7egdgb1kGQniZ9kn73j3Ku5Z7Jph+B0NCoOFft
wAEZkpHBHdVARGLNk+37OfCEZi1L2RyIOmbw74nzHBhMsvt+gy8Q5P3SzpvH
OUBTtjXe/icAjAdnBI5HrIB0ogTH8UcBCGMezAw8wYl8GxlPW7cAlO+zPSLS
zg2n3r6vE/v8oXp/JuKg8VpU7o3ppZzwRVDC8Z4gz7UY7vmk0HvAF0VGirq2
SWuxPu9MVUi4L0RqPOY3t62FZs3d4nRbX3CXth94aM+Di5F7Cms3+mL01H8Z
nCHr8J+Q0hv2XB/kBm29kpG3Hpe0Eyf5zLzRI/uea2/DeqQOhpIbZLyxbuxg
sPvQenAud9rs5vRGs7qbYO7GDRD5lPyD87EXDEsy+4KcNwDkrGffbL2g8N9f
r1XvNmBY6cU5sr8n2I++CLX+uxEm7WtqWy+4wzBzmWm8jg+3/vwz/nLAHeF5
asbKUnzYbuK50cDHHYPX0lattOTD1CUFVzN5d9Q9xtXmbD7c6+p6SLrphtA1
N4eNlPnhHtE2JdLtiiK+kUdKpvz4ppBmPF7rij6xdRXCtvyIMrDiGjjvCkvV
kPi5KH54DPNHewa6QspGWuTmA368fiulVbfogtcnsu2VXARwfvhslL6eC3hy
7xsKhwrgwd1buaabXEDN/7qZ+6AACiNWacRzuaDqxtZv7y4LwO3XqqeXe52R
8Zz9WME0wfOpr6rinUHZGNkqdFQQ7N93syl0O2GfaOF1rvOCUJrPlv/W6IRy
6WenfpYLYnDtCONXiRPESCq+PT2C4LWedH98yAk/meNLJySF0PUkqv2gvhNK
c5gGXHVC0Fpoe5RR7gibtOWSqnYhzO2V+579nyO+x5eJebwVwvGYL2t7TzrC
0J9juXpRCBkePpuFIh3Rpl3d6mMujLbj7EUJJo7YKe+lz+MojFOjIzaRGo7g
FV1TcjtIGI/TdXqLpR3hyOZ3jDdDGPSJGN+uVY54/2wjs/GFMMbO1ogL9bOQ
1tzUEjwujD7/7pRVz1lQqwvR4/8pjJSwen+TVhb2/vdQZKewCIY/Ven6V7LA
sWvPiLCXCF7aD1bfT2Oh2HuTfctuEXy9u8u/IZGFbQ5PmsMPiWCoP+3Jr30s
ZBtLFz+6IoJA/1kTvSAWpFZ379r7RQT9Wxh8nVYstC4mDEsuiUA39U73G7Cw
47uSXQevKL5/jFFXMGah8k2SjjRJFB9ja/mOqbPAfKp2tdNcFGu/8T66pMjC
r3t9QjGOopDYFRW4IM0CuVjr77MYUfD8ulC9X5iF8XODoXEZoqiy/JFwno+F
IyfShuQvisLtdVIEGy8LSod0bbsrRKGRf/Rs6WoWOqNGHyTcF4Xj3OjyGS4W
InYcJyl1i+LNvsXrj9hZEPAwvPJyXBSCyyPFhssOqLd9L5j4UxRjVxTnvv11
gLt51lEVbjHIdHBdmJh3wLK+6Z/XwgRLmV+Qn3NAkcrEzkPKYvBoJs9fnXWA
pWTOoJqJGL4yv90I+e6AyY1g9NmIoXjz8IOIbw44yTV1/7CXGFIZ2ip3pxyg
/SdPWzNCDAsbiz7Svzjg1ZT55f5DYkh6f+i76KQDYkanBVJPi2Hi6R1ofHaA
xKsLqdpXxaB9pePZkQkHPGi3+j1YJ4bmPV1ZUgQH3P0RkvZYDF5398Yvf3LA
ysqCAZ1+Mez4sjJ5M/G8rMh6+8gXMfTUh+UeJpiRO38vY0mMuOcypSrE92fT
L2vprxdHsya5VIA4P/eAbdGYlDhchiNTzIj4esQ8OlbqisPOb9dcDxH/+vod
s+pW4kjYbnCnmsjPxjFajOUmjqCZ5epRIv+02UPUuDBxRApwtXr8cMCjzJM7
C5PEMf256KnCLwdwqF841XZaHHxC266R/ziA3HGtYapYHONNR0hXFh0QH1wz
ztcgDo7LC5bObCzUcz5cY9RFnG8d1ujMycLPS10k71FxuOne2XF1FQvhgx+T
r3NLYKfE7C1Fwh9lsT/KukUlcMPHcM6d8M8nIbaX82oS0FLmrR6UYMHHXlTW
wkECP3XOPWtWYuHiN3nrnUESeGP16KGiJgtvj5H2ZsUSz8/uce7TI/zaZt0y
WCBBzE1/EsQtWMj0d/nCcUsCxTPnsyusCb+xBfIrt0ngXrg1M8OBBZrJQf/o
KQn0XI7okglgIbkv49iFfxKYWqm9PLSLhXvRebce8m3CmfIL7ePRLBhWVa3g
NdqE7bcDltqJ+6gi/+5y8ZFNOBVekfT7JgtBzdNPO89uwmuS+vrfjSxc9l78
MXt9E8r+K2ogP2ZB4rygBaVnE95vr1hdOMLC+vX0928kJXHjvcipko1Efypn
8SxrS6JRTk3yjaQj0rb66srRJHGYNT20Vc0RHClxKRGhkmjpCg74a+WIn7/L
5VbXS8Iv+Yt8QrIjtHPv2Gg+lcQ+0+c/HmQ7IlynLcpxWBKDDsmXLS854lPY
SOslzs0wuHt0jO+hI/rHNwYa22/GwuBK/qIVTrjfue9q6ORmvIo9Ya6V44QY
SlGQ4dJm8MiyCc0UO0Hk7cfTHKukwJItmZu444QX1nyOz8WkYPFW/k38qBPM
tEPe7IAUwvUE6zdrOUNmUWjwwjEpzPn21E/0OeNDduQHdhlp8B87JnXcxhVU
61WWO1Slsbreapck8f8lnzO/+JmuNCTdchNfH3CF0/4nwRespNHVGhpVWemK
Ng+pSd0waQSU0KrYBN1QovjsW3C9NJ69HR1M/UD8f2tS/t3FkMG0U/atqHMe
OLhr+b9TzjLQFqM9jrnlgSzxl+bOPjLYfpXbNKPLA3WxCZmje2Qwv+HN3x52
T7DpP1f4kSODyyvejn3Z6YncG1GOIgMykJ/brXuX7IXmgvvVfsGyKPWVyO+Y
8MZrRo6LYgTBHLMWlew+mFjasfwlRhb9633u/eL1wToPvm3RGbJ4faNd+ICy
D1xEAseOVshiTDQ6zNvLB1+z1myo+CGLtJWXrEzafSCS7Bg2nyiH07wGmR6n
fTF/xC08Nl0OS+f8Ft4U+qI33Xv3wik5KHtV81je8MWZ7JA9/67KIXYgrv33
Y1/wXToQvbJTDuybeOwql3yx9sHVA8Ii8ng+6npaOMAPky1lB89Jy4PdpGby
TIQfOtorE8VV5UHfkHGH/YAf0p7fObSZLI9B4z+HCs/4gXOk64higDwuHN9s
OPvID8tLcycMquTB3JvbfFnGH0PsCyfv3JFHr4f31dfq/mjkYssyaZGHvzAP
47uhP+LWrTlF6ZVH14XAvmGGP+YlJHOtFuXhzXHQ8lysP76bWOY70xUwmmBh
vrXDH88p1gVv7RWw06V68tNLf9wwtyt0d1fAVOsVcuiQP8Ks3Yq8wxVwsmt+
UfK7PybdwouDcxSw+ltzhK5AAN7F5t7YP6qAoHn3+I9OAYjZ2//T+bMCNEef
H9L2CgBvmKSJ4awC+KkXH/oGBsDYp7j99wpFoKvEbs/eAGRZ1o3GKipidH38
EfrJACjgr4KbliK+ihxXvZMTgEYjcpixkSLKrXTG1l0IwCe1tj9/tynC1Lxj
xu9aAMj8vXwJ4Yp4qsy2qv5eAF7xiLl67FeE15uwVFprAHZyexWYJilCiiN6
Y92TAJz580F1KVsRB00uvKG8CsDUyJzFwVpF7Ks/v/7HpwAkvzU65nVPEZpe
HW/PTAVA5OWBbnK7IlZZnnstNhMA8zYur399iki9eIvtKTEfny8X3J+0qIiU
p9sLHq4OhFaxa5MPlxIMRSN27V0XiLaC/1aY8SqB251yh3tjIGZOyWexSykh
dYx+pFs4EKnHQ3rHlJRg9aFvZJV4ICRSKySatZUQvfQwQloyEPRYvdJkcyU8
lk/7MScbiOHI2Gk/GyViXmRru6kQiL27mvTMHZXw7sPKLIZyIPK9ac0rgpXg
Q6K9VNEIhK5r+qr3u5WwKsSftFMrEB3MLkZrjBKWX4+zMkiBmKM5DqRkKOHA
L6Xbu/QDkUE5Jx14WgkxXmrjGoaBkDIaCqZdVMJg1Zpr3UbEvkCSviF/VQme
XeuWWCaBsFEL/Ml1QwkvO1UG600DMS5favyxTgliYhxblrYEYv/mr0lt95Vg
fnRERIYSCB5R7fbix0rQ9m4IUUQgMQ9HrzvarYSkvXoq68wCYchzxyG4Xwk9
CgWOLwl+xrV0zuodke/emU+x1EAE/MOo4pQSvL51D7GZB+LP7xSFVXNKyGrL
1t1B8MnZx7smlpTw/IH6ZCXBclM8tx5zK6NOk7H0huCGD3Z/StYrQ2PCMmyU
YLuRHEq6iDIoJGHjJwRfMd/RYyqtDMah4rbTBM9fMwn8rqwM3Sv7v1II3saz
/vdlkjIEt4VUdRHx5EeMZzibKKNA9vfGLQTPvqrdtNZCGbyPyIInifhpRulV
92yUsZQy1/SAyPfsfx7mkY7K4HSJ3PCa0GOKXatX3ksZkqUlG5+SA4GgFSFv
g5TxUUO5vYjQ73RH78Lx3co43yRt4EHo+1Gj7CRilPFP0HPHvHEgjE8fkP6Z
RHAV1S+KqM/Jebuaa+nKMEjrVXtpQNTDXc7K/ZQyLAbqX/AT9U2Xe7qr+bIy
TAfmnhgT9R9My/8XXU6w8kUdacIfWl/3nFKuVcarUsWCz+qB6KsVqc9qU8br
d5rXpQh/qYlNbbN4rozndc8DMgn/JR68PzT/Rhmi1ueZo4Q/FayCVnh/VoZC
0qkVyoR/464b5fLNKuP+rqr3UoS/u9avU277qwzVuT69BcL/UX23GOo8KogS
v73TmbgfzSHs5xc0VHB4+sGGKo5ACD17pVZpoIIlDymfpuUAhJBK7vtBBaOe
t29V/A3AhgXGhyf2KqjmutdoMBsAr+MXtc5GqWBN05uOHyMBqP6+u8X6gArq
NqSXiw8EgMvR3OnfERU4jbVaK/YS++umyfigPBXQDjmoTD4NwN8bBu26DSoQ
CQ9wl64j9l/+tW4TzSrQ2bRGdGdVAC7tH5668FQFql8v7ckrCwAdR/hWDKlA
oPTZrsL8AOR293h2/1OBp7Xnn/AjAdD5GfYzjKaKPwUt58UZAWBV7BkfZqhi
yDqoW9wyAFFB0S9sXVShWZLAWN4SgJq+hHLtUFUELuSP7VQPgG7TsYC5LFW0
hS3+/rSG4NTSVwmDqtgr0Jtc+MAfuiIfao7tVYP6WovGQhF/sLonihYT1FCn
eO2q4zp/RGVMZYWlqkHN0V3vJ7s/ahZ/7LI9p4a2rDLX6Uk/6I5xyPPfVwNq
/zE+3CW4TOrM+TXqEKc2k3nd/KBn6hFdekkdHI9r+T3TfcHzJb8kpkwdmVn1
qo0JvsT+MTZgdUsdrXY5s+sjfJE1H0T92KqO1Oe+p3OdfDFZvWe97IQ6LLyk
3BRlfZGvfLT0ooYG3nqXuWQ3+GClcPVQ5l0NVOstyLY89sbbmZWW+15roq0r
Ym5NkAcS5uJecYxoQlFs1ZGNWz0g9eerX+aEJgau+16XV/NAENurxJIFTdRo
N+yInXVH7MoXHl83aOHj9wPmY4nu4BK6mLvZQAv7XO8+pOW7YZOO7pqUw1ro
H/nwYvCrC77VhNlvS9OC+pclhzcvXfBA/9rZDSe0kNP5p/LHHRcEGIsp/per
hSBtb3pOqgvKzNgs6kq18JdfZPMRaRfo23UemHiuBXKYAeuylzMYYQEzNhLa
QFEcV8YfRxy88mF4UUobU9HKBRofHFE5ENRZLq+NYra1n1d0O2LDtpBrPJra
KFV6YUItdST6Xrhnp5k2LvdOeop6EPvt6P4n1sHa0HgilJj+lIVU4T91C6Ha
0Do58GdHAwt1jLgr1yO0YdAxZ5NYyoJQU0Li2jhtdAve6bMn5uW+c4f0nh7X
htjmwuY8OgseDscubavWxrKZPHnqpQOOZ/Bk/q3TxvU7smbebQ5oengioeyu
NgqaWr+tu+MASa0s5zWPtGF8dMP2zQUOGOU5s67jjTackiP7RcIdsMFCaCF2
UBtJOwzYI/wcYBafN6E8RjzvXa7mdCb2wc/nWtIntaF/q/fYJzjAvy0/duuS
NiZyNp04K+yAnKXNwX/YSej4dD9rbJ0DWnUvsUq5SQgaE7kUwukAucuXNVdv
IOFv/JbjBrNMsPrlNt0RIEEuOrj2wGcmjmwsXhMiSkKy9Yq0FWNMfEws+fBY
hgQt4dzaZy+YELqt/DJGkYTt0/eZAk+YsPpW9kBJjYQ24webzj9kosSj4kKa
HgnrK99UBd1iYqdRtT2dTsLIysR87vNM7PvS43vNhgTeIXPumzlMJP/3Yw+3
PQk92nYfTmcycY5d71SrKwmzb0soK1KZuHLLsUjWi4TIR+SXmYeYqArcV53s
R0KGQiWv4wEmHj+53YNQEp519RWmRzPxKr5vvGA3CQFjydx/9jAxov5ndnkv
CUmLE9qXwpmYHBFd4RVDnHc0TzE5lIlf2cb8TQkkaLdPT17YwQSHhbusxCES
KiYVD34LZIL3V7xO/BESeuWtx2P9mRAruWjen07Cpi4jYbIvE/JuTQ5GJ0nw
jC0VN/FmQotn2P/sKRJStOW/RngyYXpvee98Lglh59eljbgzQY/YnOJ0gYR7
auc+pboR+ssgp7aAhMWIV1zBrkz4vPK5InCFhHKzooFEFyZCUw/V7C0hIY+/
0afbmdDPsKi1p5wECYvqY+4EJ082v9K+SUJR2JS9JMEnL757n1VLAn9z6TVR
gs8zOOem75CwI5Q9aTvBxWzyXLb3SLCfHe+8Q/DNaprgjWYSOsuEEr2I8xoD
guTXtZMwrEBONSHieSx0VG/XUxIsK1+9sCPiffX4Gu3pc8IPzZo2+UQ+o3GP
HVVeEb/PS3wvS+Q7pfY5ML2PhJ0Vz1PGvJj4Pbx638QgCSzHlcJvfJjgzFZJ
tRojQZkxeZiT0HO9uXVu8QcSOL1Fb4UQeovNhRZzTZLA8ZfvGDdRD4Vrx+sC
vpFQ+F5npn8nE+S1z3pl5km4H9cwr0zUd1vTt4+HFkjIzDTwvBLFhNPu9fOj
/0jwAc+AYwwTYS/thAtW6WB1/IX/PJOYiDmyR3GZRwdLRgfyb6UwkWJwysBz
ow6crnFrIZ2JixdeOouL6eDUAmnP4inCz9t/BsdJ6iAiUPGV6lkmav4JxLyV
0UGZ6w6N7P+YeOrvdDZPVQdKN8Jll0qY6BXcX/JLk3i+pWvHikomxtvz6h11
dSBwp/wvuZaJv6pv+/i36ECdTN/u2MwE9/CfiUgzHSwzuao0ifu0MUvsTzdN
B9vPWV0mE/dN6ae7aBZDBytqavb+GWbCuXHYlcdHB5HjU2uHlon6nM0T7ggg
zhd+r7hhlQOMo+1eHw3RwSZvW8nEjUS/0Wi2W7FXB3yk+xHr5R3wseCq1d8j
Opg3umg0w3CAS4IXV32GDt6+v/Pgr6sDOlyEW6IzdWC4qbVsS6ADbmxMJ8+c
1UG31y/78AQH7Du8S2/iug6i1aa27alwwIS3/I+rVTooKeGwN21wgJvpcJV/
rQ7eJ8ZPbWl3AHnOVm3kng4e77QIeDfmAO5gHdnebh1MWUycKRdlIXfb3w2t
8zrIIJ/+NXSKhVWKt54dWiTqMbg0OF7EQtyKXccp7LqwVBl4JnyLBa/GoZV3
1+gCFn9Wb3jFgoLGw+Wbm3QhRDkpoC7iiNqNaVMF5rqwDlB+VFniiFd9go/j
M3WRYbEs4vzJCdJa4SUTp3XBV+53bsWCE8KPtqU5ntWFMTln/CmvM1br79+q
eUkXvsc4lir0nUE+3dcxXq2LrLW/oq4fdSb8cKFra68uPD/O/ZLRcEF8s9RL
4U16SLp+62pZuitkylWHb5Xpobv2W6i3twd61SV2JVbqoembVYZgjAfSK3n+
bqvRg/f8gm57lge+V38VHG/Sw945eqFYswfu3ancvqFbD82tK2Z2y3nCtV2n
ade8HgpWHomx/OSJrHGTi/IW+pA++LjI0tcbFgFqKjN0fTxXCZc2iPHG/AeJ
+sbt+mCb+Be0PtMbXp+XXjo46yOy6OZMVKM31L7fX5u8Ux9+tdpT7Gt98HjJ
PH44Sx/R3cJLfb4++Cdi45Y3pI9rtu0fHnIQ+7hdykmbcX3wJt6rZefxhdzR
xmb2T/r40LIjX13QF/Q5NdVd3/Wh4XLjNV3RF6e61y1ihQGSdevupm7zhXzG
8/8mlQxgavlZaua4LwwfruwpUDdA0FPf3r4cX2z7TeF2JBlAIbHZvvSiL8KD
qsLvmxhgx5oNb1eU+6Kemk3JYRjgxO2THOef+MJ6gTm2JcoAr/YqJ8qy+cGL
dEzwR4wBtK5nqyVz+yEipGVryQEDnA+QGGvj8UPOG51qvqMGGD1+6xG7qB+G
bwkc/nTOACu6XoQaafnh+6TN7Yv5Bmh+dt+0Vc8PK2SOfLG/bID6z5MzOiZ+
UMqac2gsN4CfLkfKQ5of9uzqlcu+b4CDBbwd2a5+SLnM62rZaoCBb4Im8PJD
br/liYXHBlAfmc7r8fNDA/32XGCPAXQln18tCvVDZ+K0svgbA/hbfJQa3e2H
kTpFrxcDBoh79VOcPcoPnPJn24w/GODlynr1r/F+EPJ48Xf6swGM51YL1Cf6
Qfn0Ks2r3wzA6DspGnTYDwz22Lz1vwk95jcph2b4IW/Idcf7NYb4+luPTziP
iC9T+z59vSHyligCj8/5IdJstVAFvyFeGWnu9L5IvH+1viVawhBjAxkDuOQH
U+cssX4pQ7xXMhzKuEyct3rHHrK8IW6P2fxruErEFya8eaWGIbz+k9/fVeqH
Wcnp6FCSIfo3Jd+uvO6H0Rdtnc/1DbGStf/r/go/PEvOl9U1MUSL3I31CpV+
uKu7L+4sxZC45+6CDVV+KPm4vXvR3BALD8i/dKoJ/c7KK/nSDcFLvVp2+hYR
/7alg49sDKH3N0j1bQ0R/+Kr18r2hiAxJvZw1vnB50a52klHQ3x/LBojeNsP
231SDs+6GuKHcowhT70fjPk8+p28DDEYwXNjgmClVh3tu36GWPwQ+qrsDqHv
vrVpm4MNwS5Vf43ZQOSn9G74cKgharkL5EYJnn3boDex2xAdPW50B2KeHzl2
6rhNlCHa11RvKCe4c8vOd1UxhviXMB8/SXDDtJmx4AFDFOmvSedtJPK7JJod
e8gQn/Y7GogQnOsw82noiCEsrr5IXUlwCtcTMjWD+J7ev/2DxPt7bheeKT5p
iIP539fmEewVEjO15rQhVpjAwoBgG3E78915huDXEZRtIuIz7lI8//KCIWw8
Za4rEayY+O+7QSGRz+bikVgiPwHtN1YXrxhCdevO1ioif453N/LZSg0RO9vi
2UXo9T0ndS6gwhAJjNNVzwk9hy29bJ7cNMTfQ+bNt2uJ/H7rXVavMwQrquPs
EUL/O2Xr/mY3GEImv8TYiKhPsccHu1/3DDH+auJGz03ivvE2XXNrMUQvv9SS
PVHfiMhdjrKdhgiZi6FzEH7wkrMoP/rCEBSdaGcdwi/WveIrpl4Z4rj6poBt
hJ8UjJ9W1QwZotVjdaEK4TeBqaKVouOGKHHe/eFHkR/Y8+O8Dnwk8uVoZV0u
9MMguwqP5bQh6DMO72ou+KHjFrt/2Q/Cbxe+SQgTfq8PfHuH97chtvLr13rn
+uH0k7TgN2xGkIxlml7J8kNSvM89Ey4jNB28s7XwhB/C1Q0FC1cbge/u99lk
4j5ty/7UvIPPCDWl190XifvG5mop+VfWCOusdfc/jPYDS69OpknJCJc3XDK5
tIeo90YFxSR1I7Ts+PnaP8wPdh1cWtwGRmCo3vmVHeCHApNHZnzbjGAo4v47
x57wl7Ce5WuGEUrlavedtPGD5c8r2846GKH6TPnNUCs/fCtPcZD0NMKS8O2h
blM/kCUtAlUiiPPojrV2Cn449fdWyNcoI3CU/mkIlfLDx17Z8KpYI3R4/DgZ
KuaHk5kr9usfNsJUn4yBGK8fhtha0qi5RnCrvf7A4KcvEt6Zlbs1GuFZ41BK
3l1fvLh/s2rTQyPk89gY8tUQ/f6idO3oIyNkdPc5RRH9uJPFfi/ouRHK/Dyy
p4l+Ld724HnkuBEe1q9DO7G/NpRQfmSsMsb3xo8Rioa++B22xfguyxiVPdfy
5Qt8oPjIxlfd1RjRnSWnC8/4wEnCI63A0xhGh87w8Rz3QU1HXO/hIGPMPK2M
rY3xwR7F+kibGGN0/Ok44Wzvg8lR0vWhC8Z4dyf6PjebDwYdlCTY3hmj+87+
dRKlXnhoxL9ssccEozXljpld7rCz3Pm0MNoEpmefPSutc8cw8+HZxVgTVJyc
WtFc4I6/obt1apJNkBbRvePrHneQ8p/ukM0xQcPivgxTIXcUcaS8ZL9tguzl
poDN3m44/PRnyb1FE8TwNkitnXMBX5/1PjF2U0g1Zly/PexCzKlF5vu4TPE3
q+X77scuaFyyG1bnNcXto9s9uC664KdmBf9/m03xX43d4efmxD6cE3gwnmqK
6StBtuRcZ9A8ex0M00zRK/rBzH2rE4xzHj2bPW4KU66P2Xk6TtB4WrO1ItsU
lzuinn3f5AQho9MUmQum2HPw4/TCrCMmBOxUeW6YQojzRv+hfEdkdD7hGH1p
Cpsz0T03F1g4uOLOgfN9RDyR3p0/PrEQaVzymzVkiqtGSUOuxDzlXpL67clH
U0SRNGZOV7CglmLef+uPKfJuprg/9WXhuUnTzaObt2B8/t90QTexX0aWq1Hl
tuBXU2m8wwMH1JdeuLaotAXf78e5a1c6oFA47r89pC3ofH07OeyEAyJ/6Ke7
07agKqNRasbaAQLXq3w0Q7fgcdPygd3dTKwaLxj4vHsLts8HZH0n5uNFkUyn
K1FbUL7ML3OphokPqWE2ogeJ8ztufcgm5vE6PxXDFdlbsJ6j5sIdPyZcxa6s
f1O3BT/FT5Dc2Yj5uZNUgbtbwO/3Uq12zh6/DzzcVnZ/CxTEXf6YfLHH2bHh
IwcebwHnGp/aF7326C0RXZTt3wKpiTlD8Sp7FLuVnDsxvAW1g9HWo8X2iOYx
MJgf34LK/RG7X/5nD4EIVmTHly2IO/k6xuK4PZgGmRMRS1vQlz+l6xhqD5nP
m1L72ckYbrp54KS/PWbOl8tacJNR1S3T98vdHlnLT7yE15NxVkZV03G7PXyq
XBaT+MnIuvjC29rSHlp+n85NCpPRVrNlzR6KPZ4/4nzdJEUG71i0sjXJHvn7
T0cqypNh2bel45+qPcKVZTZkK5ORkdlm+l7eHrwnKNYBJDKcvk+/MxWzhw0r
7uEaCzJU3l8Q1+SyhwT3au8oOhn03DhSAJs9vtzOWxyyIeP9gvP5Jwt2yBCv
NbjpSDwfY6XL/7CDW5f5azE3MjqOrZGTmLaDcmJPZIoXkZ/kF33zL3Z4PD5d
4RxMRmXT5jGZ93Y4m3PQ+mEoGbPLI4cHRu0QbLnus0oEGREFl2tbh+yg//tC
ak4UGfdunY4d7rcDd5mK3HIMGZGGr7qV+uzQ637nYfABIl7VlPuXX9uheB3d
u/sQkX9pE9X2pR323e9dNE4lo5kv10212w60PYHnr2SQMaAnyWX43A4Csj8N
eDPJeBTvR4nussP7V8mv958mQ0AylOvdUzvUpG7cO5ZHhouPKfNQhx1SDAs3
WF8k9Hreu9nuiR1Ykxo3agrJKD9iEGz72A6yF5usJa+SMRXtIpXYbofZ7Taf
j5aSIdqgRR1ps0Pzv/7UmQpC/4ma5t0En7oZIudeTYZ++JtcLYJ9/X8/bK0j
w+dbWrU0wVqCR7017pJReK1+lTnBbO2CS3n3yWAMs47lEPwi5sp59lYyjG2s
VYWI8wpUdAxDH5Px4kx6XzvB4YMPX7/qJCO6delQKREf+aTdXnI3GVZtuYJ3
ifijdu6/x91LJvYW34uiRL5llvmrn/cT/lO9ZlLVaYdRmUesvBEy6oOj+w4+
s4Pgvy8F3u/JyNZPcDrywg7bBvi+KH4mI2l8/dmWHjsk3TbS//6VjO67ygeN
iHpM7T7amTRPRrWOQO1Ton4yNjeEty6SoRUv+vATUV8Xpdd+G9kpaPTcMGE8
ZofWUZk/l9ZQUL2Y8u3IhB3+Nm612Lmego1W6QcPTBF6nIvIJAlQEFB8MuP6
dztcsL8n37KJAupl+ZCyP4Qe6h8ijslQcPxU7VjcMuGXNTyNDooUBL+lyRxa
YY/IZlfmey0K/O6JGGnw2qMkP+m/cj0KfvstlL3it8dw3LWJKGMKlKylJapE
7bFNZ+4glwUF3F9D5LkU7JG0XqKji07BT/tFxkE1e9R9oQrmbqegNrzmvKqO
PaSvZF1XcKbgzcvrFdJmRD8RUOuz2klB3HqBDdHe9tCYYcpu2E2BYvzipbRg
ewR0xYb37aUgJs/C59lu4v4eaecMOUDB4QA+u+kkor/88tPOyKLgkaXPlsSr
9hjsSU9gnqFgaE14vESlPfgqq9rFzlOQFFd0+XO9PQ4GL3tev0zB0uUj8Xxd
9nDsO5fRWUfBYNXz9DPz9sioefA65y4Rz8Ny31IOJh5kfZLyfEBBIX3m7OQ6
JtS26t3++oSCizZ1T3/IMcHZ8OId7xAFHIHl2cKOTLztOpxfwg78Z6va6tDE
xBUhkzx2TkDokzejp4OJcO/ZTDduQJh64du+PiY4ZnwO8awFsQ+5fNP6SXxf
gBwQIQDIJvxU8lR3QKLbb2VDRUBA4tHQlmIHyH/aVdtuA2xKsmTpVrLwXVPu
hpQtYErDm+sPWGiIGSiOtQd8hKdnTXpYYKzZdlbVCXgXuyR2ZY6FGHXFeGKt
xb6AYKmjWxzxdO8YnCOB7NfDwhrdjtjD5tT5MQ/4uaEr7CKnM8q4PZ2EzwON
LWsaPwk5Y5wnYNTqImAjPTBnrOwMpmjkz5JC4NejDcfmtzuDRDopEVoK/Ls0
/6wpzxmz/m27phuAwuXDsrJqLohs11/3ewi4Yabfs9fRFWVdW/KURoGqbWIT
M8GuGH9pIe06DvTn9wzsjHMFc5Sp1/AROPRh1wPrAleQ/oR7JkwDJfe0qfcm
XDGrcq2Cjd0MYb3iv3ji3BB5UpixWs4M5YHL4mdOu2OodFIjRMEMc5K/zSWK
3UF/1LT+iZIZvOqyWk/Wu0Ny0b87TZ3gtfOzOkPueBpSxVplYIY6vtObIuU9
IEfb6r5ymxnun5JNdbnpgUwfCdNgGzN8nO+75tXsgb/x0xLtDDOIX3r2h/7S
Ay+qzwynOpihIKUp4fFPDxyQGvfl9jRDxVbb7cH6nuhdiNvBFWGGhrEDKk9u
ecJMmLE1MNIMbNIXN401e6KcJK3yKMoMx/m/9vZ2eyI5pP1LSqwZTv3nv9lt
2hOab/h3cx42Q8cJSnetkhfSqsujV+SaQeP7iPDeHC/86Ep08j9rBqFNS3dN
L3nB6zPToOW8GdirvQqHK7ygK/Xnd3KBGfTyeiZL27wwdoKWwFFqBou0eG6n
X14wDhlOZm80Q6ovb1fLdm/wU9nnDO+ZISfM4hDV2RtTYnLBEQ/MYDWXXnLe
xxv/dYZYj7SaoWSNZkpvpDfYtOb4m7rM8EBNb+3+M954u0ok9edzM0Q12n+9
+583qseMf6v2mOHW1esP+q56w/900uD5XjPs8rqRca7WG22/1l6NGTHD+HTE
Gp2X3ih4riFcNWaG1syhZ6R+b8SU2Kd/ekecz3fHePWYN5Td8sKcJsxwdlNn
lNE3b3DoNIycmDQDtd1m4dRPb/SvHbJ/NGWG1a+en2v+643jTTL6ujNmUC2r
6bRf4YPAXFpJ6A8zvL/K7anC7QPy7h1il+cIP4x/qv+6ygfTUjeWN/41Q9rQ
tzxdXh8wU4zapzmokCid2/VQ2Aeqnh5GilxUuGtHvfgm6gNO/cTrXiupCBe/
kcMt4YPaT62ZXWupIGfU881t9sHJB5/YuXipsEgPvP1U2gdB59ZEmW6gokvt
6Knjsj4QsbZzuS5Ahf0LzvZOBR/MyO7tGBeigr3sL6+Nkg86Fs+YiolSoS94
bmetsg+KXtffsBenQljStWeVqg/ibwxIpW+iQnKVGsVSzQeso8unHmymYtw3
vixM3QdqPtJcv6Wp2C6kzJuo4QMuI4v9mnJUUOMzA+I0fTC8MfhzkAIVZZ6H
Sry1fHB7Mt09X4mKhTXbXmto+yCrpbzrtQoV0i4VHz8RvOPic8o6dSqGr37q
yyD5wCx69qaFJhVnxytKhHV8IMYQlEvQpuJEurrDSYJnFQxzb+lQkVzA0/uN
4Kf/3FZ90aNitDxE00jXB1f6DsTJGFJhWDvgGUbwgZuFU67GVNDVIn2OEeyU
0eKVbUqF50SN/mmCNf0/vnhMpoLCd2U0heBVpqvN2cyoOMhX7+VD8JiAWq2B
OfG9hLGb8gQ3fGUo7qZR4TqXNvCKOP9U255zxVZUbJPIHAojOLQgZ+3wVkLP
UJuG70Q+P5kDdmtsqGAkNWX7EJzALZOrz6AioOKJwl0if86GHQN+dlTEOM4l
sBF8PKxSKpNJhQ6PzlktQj8B6V+Bd1lUBEW8S7Am9L34yvT6JyfCL5yvNe0J
/ctNOvTgTsV5w37BTUS9dKc3xO/yJPTouMF6p+KDxiLnB2e9qVjFZxmbQ9S7
a/WHbTP+hF96vmXeJvzh1KSatSmIivsblLOV5Yn6RUS+3rqDil7x/bmphJ++
vfnnXbSLCs2Pli/YpXyw75jl1WfhVBTqMYWlJH2wTD4x+TeCiobvh48qE35d
XywW7RBNhfjl1euWCX+fdfVtSNxPRdRbiuETQR9IrSv5dz2WiotBPvWJ/D7Q
itLL4DxIxWJ0zacbxP2oV0x4rpVEhXydaJUijw8w0CzgmUz4R67z37HVPrCn
2hXUplJxtXApVJjTB5EbQmuCMgn/ZCpv2vfdG39bbv45lU3FVPVaa9lJbyTv
/02+f5qKiAW5mJJ33jg9fOSJ8FkqGj8cdjbp9UZNeeHw40IquLnb1x694w1T
n0+yc0VUKMwX8P6+6Y1Wfo0Q6atU2O2W0aWWeeN13N0fsaVUfIrIO+p33hu/
6L2rVKup0GpcHHoT442DixIM5xoqXpH2HRSK8AZ3lf/pw3XE+9MKuZrB3hAW
ntk02EDkm57/boblDcMPa3VOtFARfbBVpVHDG7GHzDynX1HxftLE9/QA0W+3
sf5se0NF4JFlwYLnXvjOF3ym+C0VjuLpAcktXgi6crzLc5jwS6PhzxdlXmC1
v9nS+YnoHz+OCebu94LGunDJ0r9UFMnR2bjWeOH92fMjflLmSGkMW98m4IlC
34r4ezLm6D9ir+rP6Ql3lQfCYvLm8K45Vzj+wwM9dz/Ydiub46hXm1RGjwfu
D2s9oOiYI2ms3CP1pAfOy7UXSliaw/Wp6shxdg/YVv3w7Q01x7uUpXd1vW6I
0XfKXB1uji8BjTO3Wt1Q2FjfaBpBnLen735RtRtmHx8QvhxljgYaH6/zSTfk
jq3s2n3AHFF2iWfkaG4Y5pMwXJ1pDv0dmuuvVrkiPNqC17TaHL82x5/qPuSC
E8ZnGi79JvIpTLWplXbC5OsWMueCOdaH/wmJXecEyz2zzUFL5lAKqThB/+OI
5Wu2T1U5LMAwu16/mphXwgXXDNautcCFO11b5A45gvH94NITSQvk+fHVbHrP
wobiHZi1sIBo7fQ3hXoH7DLLa2VZWaAl53ChHDFPPR58RL+91QIRGbF/jHMc
kMQva5/AsMCaM/MatyIcMJM05MvtYgGJd7begyoO6HFnHhYLtcBFf6pm4BUm
Tm80baNmW+BavfPN5hv28NjZMJBw2gK9AT9e7r9kD4UWw5m6MxYIORSzZJ1j
j4YoPQnV8xbIUbdgMePsMfpGI5L/sgWcG3gih6yI+TdfWvJ9jQWkdE8ISH62
w+9fBTqSty3wLT9FaZjYB5ptJbe63LFAydDTsgfEPuHILh7V2UT8vuz1na+N
dkgIEOioabPArzBF/q+n7NChsnLfkT4LWAt9uFZMs0PO4SPH7vdbgCfMZm+R
qR28Bldc+jNoga2CZbYtOnaYOcHWGTZmgQ5yW3uUjB1EZv5IO01a4E3RiNd5
djuMb40xyJoi8jESb075YYvyol82Hd8swBkSMS313hYU1o/95B8WYMv8XUJu
s0XQ7akuhUVC7xmFaMGTttDaEPrOZ9kCCY8KyzqTbPF3x+ff59loUFAnX+3e
a4sTYh9l13PR8OPgYN4jN1vUHBiJnV9Hw0uK1mtXNVsc7PXM1N5AQ/45taLD
0ragaw5eCeWjwSR/1n9RyBYDo33PR4RooP/R3zLAYQsOix75x5tpaCvnV7Ef
ZiB+fxTvvDQNW1tWNEj2MvCzTGheXo4GmsvWCcNnDHza6P74sBIN41ONHg73
GfChLVVVq9DgsRDY5FDPQH9MwbkxNRpYV9xmCm8y0DnybidFmwb2J0W/pK8y
QONPdQjXoWHl07uvHQsYuGepZPqfHg3Vtdcv955jwCCuQ67TgAaBvZ7+V3IY
qKrYtW7BiIaeb/JC9zMZUB7j/aVMDPMKrNa7CscYKBK4OexCpiGd5cccSGXg
TPxcZR2VBotdbuaqiQzwVuad/WBBxBe1+VRbPANp40aHBKxoMH7Q0HAjhgF2
ocEQ8600cHzYfetdNANxWw8yI60J/RymIwL3MvAjQcrk0nYakt46fdTZw8Cu
qmbZF7Y0xCiTuGx3M/DhXQDPP3saXu2Kb6oLY8BLeOWcOouGksELSzt3MfBm
W+mQhxMNfv67qkNDGbA7aN12zIV431K/vX4nAx03v95ocKOB2ndLnkmw+YfM
vM8eNHCTNtYZENwoQkoS8aaB69eUVwjB+javdlj50vBY1JXrE8GVifvs9/nT
4F0/cLyK+L7SLRHjq4E0NE7tfvOIOP/SxwaZV8E0qNSkPlIIZ0BMzHPtip00
5PSt1H9JxJ+z/d8P7V00/Bpncj8l8lt36NKgTzgNDYLg441iILXG/FFmBA3f
w6V1L+5jgG3iQ8W9SBpSq1ssomMZiBVPy/0aRQMjYbf4uQQGZhkqiRL7aVh0
nTyxMomB0OTOYOtYwl9T+yMeHGbgfW24XVw8kQ//wJmWowx4ft5gVHqAhjhR
5+cbjjPQK3FLui+RBp+fVVPXshiwtXNcszKZBukkrca0Mww8Pjw/q5dCQ/OT
S2tunWfg7qRJ6+k0GlSLFezeEf7SlRwub86godd079uJ6wzcsE86M3OcBi9v
BW6DagYK61uDbLNpqPkm7VVO+Fd0Ksj24GkaMmYX1r9sY+DU5tWGFWdosKz2
izQj/J6Sun312vOE3hkqlj+HGFi6Mz1jdJGG45NXSYYfGdj3Nbt/Rz7xvRcf
HjV/YyCE1Xu9rYiGkxLe7WVstmDIeDOSr9MgV/dC/54icZ93dp0YraDheUfH
rICOLYpvmXSRq4j40m9yN5Jt8c9CxGahhoZorzW5f5xsURXcvTXqHg27Lj9N
VzhmC48qSnrPAxoCVEy3/jxri9V/Kh5rtdDAeSX8O+81W/hlZFh9bafhd2mz
uHKrLfgrzGlB3TT4/ut7NMNmhwdzN1NaX9JwO7/oP67VdthFlmqV6SX8Z+H/
e8tGO7Q+X6SO9NOIfqqqIU70t32ztXB5T/SbqjitJKI/9hkomW6bJ/wtU/xf
HdE/U5Jy40v+EPej5+X8zEU7aD3hvMu9SIMm1dFp+zU7pLuNGbWwWWJlBj76