-
Notifications
You must be signed in to change notification settings - Fork 604
/
Copy pathdemo.py
210 lines (175 loc) · 6.83 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import logging
import numpy as np
import svgwrite
import drawing
import lyrics
from rnn import rnn
class Hand(object):
def __init__(self):
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
self.nn = rnn(
log_dir='logs',
checkpoint_dir='checkpoints',
prediction_dir='predictions',
learning_rates=[.0001, .00005, .00002],
batch_sizes=[32, 64, 64],
patiences=[1500, 1000, 500],
beta1_decays=[.9, .9, .9],
validation_batch_size=32,
optimizer='rms',
num_training_steps=100000,
warm_start_init_step=17900,
regularization_constant=0.0,
keep_prob=1.0,
enable_parameter_averaging=False,
min_steps_to_checkpoint=2000,
log_interval=20,
logging_level=logging.CRITICAL,
grad_clip=10,
lstm_size=400,
output_mixture_components=20,
attention_mixture_components=10
)
self.nn.restore()
def write(self, filename, lines, biases=None, styles=None, stroke_colors=None, stroke_widths=None):
valid_char_set = set(drawing.alphabet)
for line_num, line in enumerate(lines):
if len(line) > 75:
raise ValueError(
(
"Each line must be at most 75 characters. "
"Line {} contains {}"
).format(line_num, len(line))
)
for char in line:
if char not in valid_char_set:
raise ValueError(
(
"Invalid character {} detected in line {}. "
"Valid character set is {}"
).format(char, line_num, valid_char_set)
)
strokes = self._sample(lines, biases=biases, styles=styles)
self._draw(strokes, lines, filename, stroke_colors=stroke_colors, stroke_widths=stroke_widths)
def _sample(self, lines, biases=None, styles=None):
num_samples = len(lines)
max_tsteps = 40*max([len(i) for i in lines])
biases = biases if biases is not None else [0.5]*num_samples
x_prime = np.zeros([num_samples, 1200, 3])
x_prime_len = np.zeros([num_samples])
chars = np.zeros([num_samples, 120])
chars_len = np.zeros([num_samples])
if styles is not None:
for i, (cs, style) in enumerate(zip(lines, styles)):
x_p = np.load('styles/style-{}-strokes.npy'.format(style))
c_p = np.load('styles/style-{}-chars.npy'.format(style)).tostring().decode('utf-8')
c_p = str(c_p) + " " + cs
c_p = drawing.encode_ascii(c_p)
c_p = np.array(c_p)
x_prime[i, :len(x_p), :] = x_p
x_prime_len[i] = len(x_p)
chars[i, :len(c_p)] = c_p
chars_len[i] = len(c_p)
else:
for i in range(num_samples):
encoded = drawing.encode_ascii(lines[i])
chars[i, :len(encoded)] = encoded
chars_len[i] = len(encoded)
[samples] = self.nn.session.run(
[self.nn.sampled_sequence],
feed_dict={
self.nn.prime: styles is not None,
self.nn.x_prime: x_prime,
self.nn.x_prime_len: x_prime_len,
self.nn.num_samples: num_samples,
self.nn.sample_tsteps: max_tsteps,
self.nn.c: chars,
self.nn.c_len: chars_len,
self.nn.bias: biases
}
)
samples = [sample[~np.all(sample == 0.0, axis=1)] for sample in samples]
return samples
def _draw(self, strokes, lines, filename, stroke_colors=None, stroke_widths=None):
stroke_colors = stroke_colors or ['black']*len(lines)
stroke_widths = stroke_widths or [2]*len(lines)
line_height = 60
view_width = 1000
view_height = line_height*(len(strokes) + 1)
dwg = svgwrite.Drawing(filename=filename)
dwg.viewbox(width=view_width, height=view_height)
dwg.add(dwg.rect(insert=(0, 0), size=(view_width, view_height), fill='white'))
initial_coord = np.array([0, -(3*line_height / 4)])
for offsets, line, color, width in zip(strokes, lines, stroke_colors, stroke_widths):
if not line:
initial_coord[1] -= line_height
continue
offsets[:, :2] *= 1.5
strokes = drawing.offsets_to_coords(offsets)
strokes = drawing.denoise(strokes)
strokes[:, :2] = drawing.align(strokes[:, :2])
strokes[:, 1] *= -1
strokes[:, :2] -= strokes[:, :2].min() + initial_coord
strokes[:, 0] += (view_width - strokes[:, 0].max()) / 2
prev_eos = 1.0
p = "M{},{} ".format(0, 0)
for x, y, eos in zip(*strokes.T):
p += '{}{},{} '.format('M' if prev_eos == 1.0 else 'L', x, y)
prev_eos = eos
path = svgwrite.path.Path(p)
path = path.stroke(color=color, width=width, linecap='round').fill("none")
dwg.add(path)
initial_coord[1] -= line_height
dwg.save()
if __name__ == '__main__':
hand = Hand()
# usage demo
lines = [
"Now this is a story all about how",
"My life got flipped turned upside down",
"And I'd like to take a minute, just sit right there",
"I'll tell you how I became the prince of a town called Bel-Air",
]
biases = [.75 for i in lines]
styles = [9 for i in lines]
stroke_colors = ['red', 'green', 'black', 'blue']
stroke_widths = [1, 2, 1, 2]
hand.write(
filename='img/usage_demo.svg',
lines=lines,
biases=biases,
styles=styles,
stroke_colors=stroke_colors,
stroke_widths=stroke_widths
)
# demo number 1 - fixed bias, fixed style
lines = lyrics.all_star.split("\n")
biases = [.75 for i in lines]
styles = [12 for i in lines]
hand.write(
filename='img/all_star.svg',
lines=lines,
biases=biases,
styles=styles,
)
# demo number 2 - fixed bias, varying style
lines = lyrics.downtown.split("\n")
biases = [.75 for i in lines]
styles = np.cumsum(np.array([len(i) for i in lines]) == 0).astype(int)
hand.write(
filename='img/downtown.svg',
lines=lines,
biases=biases,
styles=styles,
)
# demo number 3 - varying bias, fixed style
lines = lyrics.give_up.split("\n")
biases = .2*np.flip(np.cumsum([len(i) == 0 for i in lines]), 0)
styles = [7 for i in lines]
hand.write(
filename='img/give_up.svg',
lines=lines,
biases=biases,
styles=styles,
)