-
Notifications
You must be signed in to change notification settings - Fork 706
/
Copy patheval_image.py
executable file
·64 lines (50 loc) · 1.91 KB
/
eval_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from __future__ import print_function
import argparse
import numpy as np
import caffe
def parse_args():
parser = argparse.ArgumentParser(
description='evaluate pretrained mobilenet models')
parser.add_argument('--proto', dest='proto',
help="path to deploy prototxt.", type=str)
parser.add_argument('--model', dest='model',
help='path to pretrained weights', type=str)
parser.add_argument('--image', dest='image',
help='path to color image', type=str)
args = parser.parse_args()
return args, parser
global args, parser
args, parser = parse_args()
def eval():
nh, nw = 224, 224
img_mean = np.array([103.94, 116.78, 123.68], dtype=np.float32)
caffe.set_mode_cpu()
net = caffe.Net(args.proto, args.model, caffe.TEST)
im = caffe.io.load_image(args.image)
h, w, _ = im.shape
if h < w:
off = (w - h) / 2
im = im[:, off:off + h]
else:
off = (h - w) / 2
im = im[off:off + h, :]
im = caffe.io.resize_image(im, [nh, nw])
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1)) # row to col
transformer.set_channel_swap('data', (2, 1, 0)) # RGB to BGR
transformer.set_raw_scale('data', 255) # [0,1] to [0,255]
transformer.set_mean('data', img_mean)
transformer.set_input_scale('data', 0.017)
net.blobs['data'].reshape(1, 3, nh, nw)
net.blobs['data'].data[...] = transformer.preprocess('data', im)
out = net.forward()
prob = out['prob']
prob = np.squeeze(prob)
idx = np.argsort(-prob)
label_names = np.loadtxt('synset.txt', str, delimiter='\t')
for i in range(5):
label = idx[i]
print('%.2f - %s' % (prob[label], label_names[label]))
return
if __name__ == '__main__':
eval()