Skip to content

Latest commit

 

History

History
91 lines (66 loc) · 1.75 KB

EXAMPLES.md

File metadata and controls

91 lines (66 loc) · 1.75 KB

iosMath Examples

Square of sums

(a_1 + a_2)^2 = a_1^2 + 2a_1a_2 + a_2^2

Square Formula

Quadratic Formula

x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}

Quadratic Formula

Standard Deviation

\sigma = \sqrt{\frac{1}{N}\sum_{i=1}^N (x_i - \mu)^2}

Standard Deviation

De Morgan's laws

\neg(P\land Q) \iff (\neg P)\lor(\neg Q)

De Morgan

Log Change of Base

\log_b(x) = \frac{\log_a(x)}{\log_a(b)}

Log Base Change

Cosine addition

\cos(\theta + \varphi) = \cos(\theta)\cos(\varphi) - \sin(\theta)\sin(\varphi)

Cos Sum

Limit e^k

\lim_{x\to\infty}\left(1 + \frac{k}{x}\right)^x = e^k

Limit

Stirling Numbers of the Second Kind

{n \brace k} = \frac{1}{k!}\sum_{j=0}^k (-1)^{k-j}\binom{k}{j}(k-j)^n

Stirling Numbers

Gaussian Integral

\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}

Gauss Integral

Arithmetic mean, geometric mean inequality

\frac{1}{n}\sum_{i=1}^{n}x_i \geq \sqrt[n]{\prod_{i=1}^{n}x_i}

AM-GM

Cauchy-Schwarz inequality

\left(\sum_{k=1}^n a_k b_k \right)^2 \le \left(\sum_{k=1}^n a_k^2\right)\left(\sum_{k=1}^n b_k^2\right)

Cauchy Schwarz

Cauchy integral formula

f^{(n)}(z_0) = \frac{n!}{2\pi i}\oint_\gamma\frac{f(z)}{(z-z_0)^{n+1}}dz

Cauchy Integral

Schroedinger's Equation

i\hbar\frac{\partial}{\partial t}\Psi(x,t) = -\frac{\hbar}{2m}\nabla^2\Psi(x,t) + V(x)\Psi(x,t)

Schroedinger