Slim Fourati 2024-01-30
suppressPackageStartupMessages(library(package = "knitr"))
suppressPackageStartupMessages(library(package = "ComplexHeatmap"))
suppressPackageStartupMessages(library(package = "RColorBrewer"))
suppressPackageStartupMessages(library(package = "circlize"))
suppressPackageStartupMessages(library(package = "tidyverse"))
load(file = file.path(workDir, "output/joana.gseaOutput.RData"))
MODELNAME <- "monocytes_vax"
sigGS <- filter(gseaOutput, `modelName` %in% MODELNAME &
!(contrast %in% "Untreated.D14-Untreated.pre") &
grepl(pattern = "HALLMARK_", NAME) &
`FDR q-val` <= 0.05) %>%
.$NAME
nesMat <- filter(gseaOutput, `modelName` %in% MODELNAME &
!(contrast %in% "Untreated.D14-Untreated.pre") &
NAME %in% sigGS) %>%
select(NES, contrast, NAME) %>%
pivot_wider(names_from = contrast, values_from = NES) %>%
column_to_rownames(var = "NAME") %>%
as.matrix()
nesNaMat <- filter(gseaOutput, `modelName` %in% MODELNAME &
!(contrast %in% "Untreated.D14-Untreated.pre") &
NAME %in% sigGS &
`NOM p-val` <= 0.05) %>%
select(NES, contrast, NAME) %>%
pivot_wider(names_from = contrast, values_from = NES) %>%
column_to_rownames(var = "NAME") %>%
as.matrix()
nesNaMat <- nesNaMat[rownames(nesMat), colnames(nesMat)]
heat <- Heatmap(matrix = nesNaMat,
name = "NES",
column_title = "Monocytes",
width = unit(2, units = "in"),
height = unit(0.4 * nrow(nesNaMat), units = "in"),
row_names_gp = gpar(fontsize = 8),
show_row_dend = FALSE,
clustering_distance_rows = dist(nesMat),
clustering_distance_columns = dist(t(nesMat)),
column_labels = gsub(pattern = "Untreated",
replacement = "UnTx",
colnames(nesNaMat)) %>%
gsub(pattern = "D14",
replacement = "wk2"),
row_labels = gsub(pattern = "HALLMARK_",
replacement = "",
rownames(nesNaMat)),
column_names_gp = gpar(col = c("green", "green", "grey", "orange", "orange")))
print(heat)
MODELNAME <- "NK cells_vax"
sigGS <- filter(gseaOutput, `modelName` %in% MODELNAME &
!(contrast %in% "Untreated.D14-Untreated.pre") &
grepl(pattern = "HALLMARK_", NAME) &
`FDR q-val` <= 0.05) %>%
.$NAME
nesMat <- filter(gseaOutput, `modelName` %in% MODELNAME &
!(contrast %in% "Untreated.D14-Untreated.pre") &
NAME %in% sigGS) %>%
select(NES, contrast, NAME) %>%
pivot_wider(names_from = contrast, values_from = NES) %>%
column_to_rownames(var = "NAME") %>%
as.matrix()
nesNaMat <- filter(gseaOutput, `modelName` %in% MODELNAME &
!(contrast %in% "Untreated.D14-Untreated.pre") &
NAME %in% sigGS &
`NOM p-val` <= 0.05) %>%
select(NES, contrast, NAME) %>%
pivot_wider(names_from = contrast, values_from = NES) %>%
column_to_rownames(var = "NAME") %>%
as.matrix()
nesNaMat <- nesNaMat[rownames(nesMat), colnames(nesMat)]
heat <- Heatmap(matrix = nesNaMat,
col = colorRamp2(breaks = c(-1, 0, 1),
colors = c("blue", "white", "red")),
name = "NES",
column_title = "NK cells",
width = unit(2, units = "in"),
height = unit(0.4 * nrow(nesNaMat), units = "in"),
row_names_gp = gpar(fontsize = 8),
show_row_dend = FALSE,
clustering_distance_rows = dist(nesMat),
clustering_distance_columns = dist(t(nesMat)),
column_labels = gsub(pattern = "Untreated",
replacement = "UnTx",
colnames(nesNaMat)) %>%
gsub(pattern = "D14",
replacement = "wk2"),
row_labels = gsub(pattern = "HALLMARK_",
replacement = "",
rownames(nesNaMat)),
column_names_gp = gpar(col = c("green", "green", "grey", "orange", "orange")))
print(heat)
sessionInfo()