-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
executable file
·133 lines (111 loc) · 4.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import neat.config
import pygame # Importing pygame
from pygame import mixer # importing mixer for music/sound effects
from classes import Player, Wall # Importing player and wall class
from constants import music_dict,floor_group, TEXT_FONT # Importing music_dict (contains path of varies sound effects)
from test import * # Importing All the methods (functions required)
import neat # For creating our AI
import visualizee
from test import test_ai as tai
from train import train_ai as trai
from playGame import play,print_text
# Initializing pygame and mixer
pygame.init()
mixer.init()
pygame.font.init()
# NEAT configuration
def run(config_path):
config = neat.config.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path)
if options["test_ai"] == True:
import pickle
with open (os.path.join("TrainedModel/Model1","winner_4"),"rb") as f :
winner = pickle.load(f)
winner_net = neat.nn.FeedForwardNetwork.create(winner,config)
while True:
# global floor_group
# floor_group = []
tai(winner_net,15)
elif options["train_ai"] == True:
p = neat.Population(config)
p.add_reporter(neat.StdOutReporter(True))
stats = neat.StatisticsReporter()
p.add_reporter(stats)
p.add_reporter(neat.Checkpointer(2))
winner = p.run(trai, 2000)
# Storing the neural network
import pickle
with open (f"winner_{6}","wb") as f:
pickle.dump(winner,f)
print(winner)
winner_net = neat.nn.FeedForwardNetwork.create(winner,config)
visualizee.draw_net(config, winner)
visualizee.plot_stats(stats, ylog=False, view=True)
visualizee.plot_species(stats, view=True)
def test(configf):
global options
local_dir = os.path.dirname(__file__)
config_path = os.path.join(local_dir, configf)
options["test_ai"] = True
options["train_ai"] = False
run(config_path)
def train(configf):
global options
options["train_ai"] = True
options["test_ai"] = False
local_dir = os.path.dirname(__file__)
config_path = os.path.join(local_dir, configf)
run(config_path)
def chooseMode():
global options
options = {
"play" : False,
"train_ai" : False,
"test_ai" : False
}
optionsL = ["play","train_ai", "test_ai"]
screen = pygame.display.set_mode((550,350))
pygame.display.set_caption("Choose Mode")
font = TEXT_FONT
font.bold = True
font.italic = False
clock = pygame.time.Clock()
bg_image = pygame.image.load(os.path.join("sprites","background.jpg"))
hs_image = pygame.image.load(os.path.join("sprites","homescreen1.png")).convert_alpha()
hand_img = pygame.image.load(os.path.join("sprites", "hand.png"))
hand_rect = hand_img.get_rect(center=(550//2 - 230,330//2 - 110))
index = 0
options['play'] = True
while True:
for event in pygame.event.get():
if (event.type == pygame.QUIT):
pygame.quit()
exit()
if (event.type == pygame.KEYDOWN):
if event.key == pygame.K_DOWN and index < len(optionsL)- 1 :
hand_rect.y += 100
options[optionsL[index]] = False
options[optionsL[index + 1]] = True
index += 1
elif event.key == pygame.K_UP and index > 0:
hand_rect.y -= 100
options[optionsL[index - 1]] = True
options[optionsL[index]] = False
index -= 1
elif event.key == pygame.K_RETURN:
return options
screen.blit(bg_image,(0,0))
screen.blit(hs_image,(290,40))
print_text("Play",pygame.font.Font('fonts/agency_fb.ttf', 80),screen,(150,50))
print_text("Train",pygame.font.Font('fonts/agency_fb.ttf', 80),screen,(160,150))
print_text("Test",pygame.font.Font('fonts/agency_fb.ttf', 80),screen,(150,250))
screen.blit(hand_img,hand_rect)
pygame.display.update()
clock.tick(60)
if __name__ == "__main__":
result = chooseMode()
if result["play"] :
play()
elif result["train_ai"]:
train(os.path.join("TrainedModel/Model1","config_winner_4.txt"))
elif result["test_ai"]:
test(os.path.join("TrainedModel/Model1","config_winner_4.txt"))