|
| 1 | +import pytest |
| 2 | +import numpy as np |
| 3 | +from radius_clustering import RadiusClustering |
| 4 | +from sklearn.datasets import load_iris |
| 5 | + |
| 6 | +@pytest.fixture |
| 7 | +def iris_data(): |
| 8 | + """Fixture to load the Iris dataset.""" |
| 9 | + data = load_iris() |
| 10 | + return data.data |
| 11 | + |
| 12 | +@pytest.fixture |
| 13 | +def approx_results(): |
| 14 | + """Fixture to store results for approximate clustering.""" |
| 15 | + results = { |
| 16 | + 'labels': [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 17 | + 0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
| 18 | + 1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,1,2,2,2,2, |
| 19 | + 2,2,1,1,2,2,2,2,1,2,1,2,1,2,2,1,1,2,2,2,2,2,1,2,2,2,2,1,2,2,2,1,2,2,2,1,2, |
| 20 | + 2,1], |
| 21 | + "centers": [0,96,125], |
| 22 | + "time" : 0.0280, |
| 23 | + "effective_radius": 1.4282856857085722 |
| 24 | + } |
| 25 | + return results |
| 26 | + |
| 27 | +@pytest.fixture |
| 28 | +def exact_results(): |
| 29 | + """Fixture to store results for exact clustering.""" |
| 30 | + results = { |
| 31 | + 'labels':[ |
| 32 | + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 33 | + 0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
| 34 | + 1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,1,2,2,2,2, |
| 35 | + 2,2,1,1,2,2,2,2,1,2,1,2,1,2,2,1,1,2,2,2,2,2,1,2,2,2,2,1,2,2,2,1,2,2,2,1,2, |
| 36 | + 2,1 |
| 37 | + ], |
| 38 | + "centers": [0, 96, 102], |
| 39 | + "time": 0.0004, |
| 40 | + "effective_radius": 1.4282856857085722 |
| 41 | + } |
| 42 | + return results |
| 43 | + |
| 44 | +def assert_results(results, expected): |
| 45 | + """Helper function to assert clustering results.""" |
| 46 | + assert len(results.labels_) == len(expected['labels']), "Labels length mismatch" |
| 47 | + assert set(results.labels_) == set(expected['labels']), "Labels do not match expected" |
| 48 | + assert results.centers_ == expected['centers'], "Centers do not match expected" |
| 49 | + assert abs(results.mds_exec_time_ - expected['time']) < 0.1, "Execution time mismatch by more than 0.1 seconds" |
| 50 | + assert abs(results.effective_radius_ - expected['effective_radius']) < 0.01, "Effective radius mismatch" |
| 51 | + assert np.sum(results.labels_ - expected['labels']) == 0, "Labels do not match expected" |
| 52 | + |
| 53 | +def test_exact(iris_data, exact_results): |
| 54 | + """Test the RadiusClustering with exact""" |
| 55 | + clustering = RadiusClustering(radius=1.43, manner='exact').fit(iris_data) |
| 56 | + assert_results(clustering, exact_results) |
| 57 | + |
| 58 | +def test_approx(iris_data, approx_results): |
| 59 | + """Test the RadiusClustering with approx.""" |
| 60 | + clustering = RadiusClustering(radius=1.43, manner='approx').fit(iris_data) |
| 61 | + assert_results(clustering, approx_results) |
0 commit comments