forked from sinaptik-ai/pandas-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
191 lines (148 loc) · 5.21 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Tuple, Union
from pandasai.core.prompts.base import BasePrompt
from pandasai.helpers.memory import Memory
from pandasai.llm.base import LLM
if TYPE_CHECKING:
from pandasai.agent.state import AgentState
class BaseOpenAI(LLM):
"""Base class to implement a new OpenAI LLM.
LLM base class, this class is extended to be used with OpenAI API.
"""
api_token: str
api_base: str = "https://api.openai.com/v1"
temperature: float = 0
max_tokens: int = 1000
top_p: float = 1
frequency_penalty: float = 0
presence_penalty: float = 0.6
best_of: int = 1
n: int = 1
stop: Optional[str] = None
request_timeout: Union[float, Tuple[float, float], Any, None] = None
max_retries: int = 2
seed: Optional[int] = None
# support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
default_headers: Union[Mapping[str, str], None] = None
default_query: Union[Mapping[str, object], None] = None
# Configure a custom httpx client. See the
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
http_client: Union[Any, None] = None
client: Any
_is_chat_model: bool
def _set_params(self, **kwargs):
"""
Set Parameters
Args:
**kwargs: ["model", "deployment_name", "temperature","max_tokens",
"top_p", "frequency_penalty", "presence_penalty", "stop", "seed"]
Returns:
None.
"""
valid_params = [
"model",
"deployment_name",
"temperature",
"max_tokens",
"top_p",
"frequency_penalty",
"presence_penalty",
"stop",
"seed",
]
for key, value in kwargs.items():
if key in valid_params:
setattr(self, key, value)
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
params: Dict[str, Any] = {
"temperature": self.temperature,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"seed": self.seed,
"stop": self.stop,
"n": self.n,
}
if self.max_tokens is not None:
params["max_tokens"] = self.max_tokens
# Azure gpt-35-turbo doesn't support best_of
# don't specify best_of if it is 1
if self.best_of > 1:
params["best_of"] = self.best_of
return params
@property
def _invocation_params(self) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
openai_creds: Dict[str, Any] = {}
return {**openai_creds, **self._default_params}
@property
def _client_params(self) -> Dict[str, any]:
return {
"api_key": self.api_token,
"base_url": self.api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
"http_client": self.http_client,
}
def completion(self, prompt: str, memory: Memory) -> str:
"""
Query the completion API
Args:
prompt (str): A string representation of the prompt.
Returns:
str: LLM response.
"""
prompt = self.prepend_system_prompt(prompt, memory)
params = {**self._invocation_params, "prompt": prompt}
if self.stop is not None:
params["stop"] = [self.stop]
response = self.client.create(**params)
self.last_prompt = prompt
return response.choices[0].text
def chat_completion(self, value: str, memory: Memory) -> str:
"""
Query the chat completion API
Args:
value (str): Prompt
Returns:
str: LLM response.
"""
messages = memory.to_openai_messages() if memory else []
# adding current prompt as latest query message
messages.append(
{
"role": "user",
"content": value,
},
)
params = {
**self._invocation_params,
"messages": messages,
}
if self.stop is not None:
params["stop"] = [self.stop]
response = self.client.create(**params)
return response.choices[0].message.content
def call(self, instruction: BasePrompt, context: AgentState = None):
"""
Call the OpenAI LLM.
Args:
instruction (BasePrompt): A prompt object with instruction for LLM.
context (AgentState): context to pass.
Raises:
UnsupportedModelError: Unsupported model
Returns:
str: Response
"""
self.last_prompt = instruction.to_string()
memory = context.memory if context else None
return (
self.chat_completion(self.last_prompt, memory)
if self._is_chat_model
else self.completion(self.last_prompt, memory)
)