-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathnearfield.py
517 lines (453 loc) · 24.9 KB
/
nearfield.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# -*- coding: utf-8 -*-
"""
(C) 2015 Steven Byrnes
Calculate the near-field of a grating-based metasurface lens
"""
from __future__ import division, print_function
import math
from math import pi
degree = pi / 180
import numpy as np
#http://pythonhosted.org/numericalunits/
import numericalunits as nu
from numericalunits import um, nm
# http://pythonhosted.org/dxfwrite/
from scipy.spatial import cKDTree
import matplotlib.pyplot as plt
inf = float('inf')
import design_collimator
import grating
from numpy.fft import fft2, fftshift
#import loop_post_analysis
#import grating
def good_fft_number(goal):
"""pick a number >= goal that has only factors of 2,3,5. FFT will be much
faster if I use such a number"""
assert goal < 1e5
choices = [2**a * 3**b * 5**c for a in range(17) for b in range(11)
for c in range(8)]
return min(x for x in choices if x >= goal)
"""
* lens_periphery_summary, a dictionary:
{'r_center_list': array([...]),
-- the radius at the center of each subsequent grating
'r_min_list': array([...]),
-- the radius at the inner boundary of this grating
'grating_period_list': array([...]),
-- the period of the corresponding grating. Note that
r_center_list[i] + 0.5 * grating_period_list[i]
+ 0.5 * grating_period_list[i+1] == r_center_list[i+1]
'gratingcollection_list': [...]
-- GratingCollection objects from inside to out
(list will look like [gc0, gc1, gc2, ...])
'gratingcollection_index_here_list': [...]
-- For each ring of gratings, what is the applicable
gratingcollection object (indexed from the list above)?
(list will look like [0,0,0,...,1,1,1,...2,2,2...])
'num_around_circle_list': [...]
-- how many copies are there around 2pi, for each entry of the above
(list will look like [n1, n1, n1, ... , n2, n2, n2, ...])
}
"""
def build_nearfield(source_x, source_y, source_z, source_pol, wavelength,
lens_periphery_summary, lens_center_summary, hexgridset,
x_pts=None, y_pts=None, dipole_moment=1e-30 * nu.C * nu.m):
"""To get an isotropic source, we can take an incoherent sum of an x-, y-,
and z-polarized dipole source. Then to get a Lambertian source we scale
the field by cos(theta). So source_pol should be 'x' or 'y' or 'z'. I don't
think there's any way to do it with just two incoherent runs ... you can't
pick two orthogonal polarizations smoothly everywhere.
Note: I am not worrying about how much RAM this function uses. If you run
out of RAM just use build_nearfield_big() below instead.
dipole_moment is arbitrary, it turns into a scale factor for E and H. But
use real (numericalunits) units, and the result will also be in real units
If source_z = -inf, do a normally-incident plane wave. Use dipole_moment
as the magnitude of the electric field.
"""
assert source_z < 0
assert source_pol in ('x','y','z')
wavelength_in_nm = int(round(wavelength/nm))
r_min_list = lens_periphery_summary['r_min_list']
r_max_list = lens_periphery_summary['r_max_list']
r_center_list = lens_periphery_summary['r_center_list']
gratingcollection_index_here_list = lens_periphery_summary['gratingcollection_index_here_list']
num_around_circle_list = lens_periphery_summary['num_around_circle_list']
grating_period_list = lens_periphery_summary['grating_period_list']
gratingcollection_list = lens_periphery_summary['gratingcollection_list']
lens_max_r = r_max_list[-1]
if x_pts is None:
num_x = good_fft_number(2 * lens_max_r / (wavelength / 2.2))
x_pts = np.linspace(-lens_max_r, lens_max_r, num=num_x)
else:
num_x = len(x_pts)
if y_pts is None:
num_y = good_fft_number(2 * lens_max_r / (wavelength / 2.2))
y_pts = np.linspace(-lens_max_r, lens_max_r, num=num_y)
else:
num_y = len(y_pts)
for l in [x_pts,y_pts]:
diffs = [l[i+1] - l[i] for i in range(len(l)-1)]
assert 0 < diffs[0] < wavelength/2
assert max(diffs) - min(diffs) <= 1e-9 * max(abs(d) for d in diffs)
n_glass = gratingcollection_list[0].grating_list[0].n_glass
if n_glass == 0:
n_glass = grating.n_glass(wavelength_in_nm)
k_glass = 2*pi*n_glass/wavelength
kvac = 2*pi/wavelength
x_meshgrid,y_meshgrid = np.meshgrid(x_pts, y_pts, indexing='ij')
lens_r = (x_meshgrid**2 + y_meshgrid**2)**0.5
lens_phi = np.arctan2(y_meshgrid,x_meshgrid)
# which_ring is the index for what ring of gratings each thing is, or -1
# means N/A (in the center or outside the lens). in_center is specifically
# points in the center
ring_boundary_list = np.hstack((r_min_list, lens_max_r))
which_ring = np.searchsorted(ring_boundary_list, lens_r) - 1
in_center = (which_ring == -1)
which_ring[which_ring == len(r_min_list)] = -1
if which_ring.max() == -1 and in_center.max() == 0:
# no points in the lens, shortcut to the end
Ex = Ey = Hx = Hy = np.zeros_like(which_ring, dtype=complex)
power_passing_through_lens = 0
return Ex, Ey, Hx, Hy, x_pts, y_pts, power_passing_through_lens, n_glass
# #### test the which_ring code
# for i,x in enumerate(x_pts):
# for j,y in enumerate(y_pts):
# n = which_ring[i,j]
# r = (x**2 + y**2)**0.5
# if n == -1:
# assert r <= r_min_list[0] or r >= lens_max_r
# else:
# assert r_min_list[n] <= r <= r_max_list[n]
# which_gratingcollection is -1 if the point is not in the periphery, or i
# if it falls in the domain of gratingcollection_list[i]
which_gratingcollection = gratingcollection_index_here_list[which_ring]
which_gratingcollection[which_ring == -1] = -1
# grating_period is the length of this grating unit cell in the radial
# direction
grating_period = grating_period_list[which_ring]
# Note: The command a = blah[which_ring] will set a[i,j] = blah[-1] when
# i,j is outside the lens periphery. I will not be using the data at these
# points for any output results so it generally doesn't matter what they're
# set to. (Except which_ring and which_gratingcollection; these are used to
# see what's in the lens periphery.)
# angle_per_grating the angle that you need to rotate about the lens
# center to get to the next copy of this grating
angle_per_grating = 2*pi/num_around_circle_list[which_ring]
r_center = r_center_list[which_ring]
# lateral_period is the length of this grating unit cell in the azimuthal
# direction
lateral_period = r_center * angle_per_grating
# grating_rotation is the CCW rotation of this grating relative to the x axis
grating_rotation = (lens_phi / angle_per_grating).round() * angle_per_grating
gratingcenter_x = r_center * np.cos(grating_rotation)
gratingcenter_y = r_center * np.sin(grating_rotation)
dx = x_meshgrid - source_x
dy = y_meshgrid - source_y
dz = 0 - source_z
distance = (dx**2 + dy**2 + dz**2)**0.5
# (ux,uy,uz) is the unit vector that the incoming light is traveling.
if source_z == -inf:
ux = np.zeros_like(x_meshgrid)
uy = np.zeros_like(x_meshgrid)
uz = np.ones_like(x_meshgrid)
else:
ux = dx / distance
uy = dy / distance
uz = dz / distance
# xp,yp,z (short for xprime, yprime,z) coordinates are a coordinate system
# where (xp,yp)=(0,0) is the center of the grating that this point is on,
# increasing xp moves away from the lens center, and increasing yp move
# CCW around the lens center.
# (uxp,uyp,uz) is the primed coordinates version of (ux,uy,uz), i.e. the
# unit vector that the incoming light is travelgin
# Checking signs: If (ux,uy)=(1,0) (light heading rightward)
# and grating_rotation = +10degrees (first quadrant) then uyp is negative
uxp = ux * np.cos(grating_rotation) + uy * np.sin(grating_rotation)
uyp = -ux * np.sin(grating_rotation) + uy * np.cos(grating_rotation)
# Checking signs: If (x,y) ~ (cos(grating_rotation),sin(grating_rotation))
# then we expect yp = 0
# The following two options are exactly identical (I checked)
xp = x_meshgrid * np.cos(grating_rotation) + y_meshgrid * np.sin(grating_rotation) - r_center
yp = -x_meshgrid * np.sin(grating_rotation) + y_meshgrid * np.cos(grating_rotation)
# xp = ((x_meshgrid-gratingcenter_x) * np.cos(grating_rotation)
# + (y_meshgrid-gratingcenter_y) * np.sin(grating_rotation))
# yp = (-(x_meshgrid-gratingcenter_x) * np.sin(grating_rotation)
# + (y_meshgrid-gratingcenter_y) * np.cos(grating_rotation))
# dipole field: We are calculating the actual field in real units, except
# for the e^ikr phase factor
# lambert cosine law: intensity goes as cos(angle_from_normal), so I should
# scale fields by the square-root of that, i.e. uz**0.5
# Jackson (9.19): H = ck^2/4pi * (n x p) * e^ikr/r ; E = Z0 H x n
H_coef = nu.c0 * (2*pi / wavelength)**2 * dipole_moment / (4*pi)
pol_vector = {'x':[1,0,0], 'y':[0,1,0], 'z':[0,0,1]}[source_pol]
if source_z > -inf:
dipole_field_Hx = (uy * pol_vector[2] - uz * pol_vector[1]) * H_coef * uz**0.5 / distance
dipole_field_Hy = (uz * pol_vector[0] - ux * pol_vector[2]) * H_coef * uz**0.5 / distance
dipole_field_Hz = (ux * pol_vector[1] - uy * pol_vector[0]) * H_coef * uz**0.5 / distance
# then E is proportional to H cross rhat
dipole_field_Ex = (dipole_field_Hy * uz - dipole_field_Hz * uy) * nu.Z0
dipole_field_Ey = (dipole_field_Hz * ux - dipole_field_Hx * uz) * nu.Z0
else:
assert source_pol != 'z'
dipole_field_Ex = pol_vector[0] * dipole_moment * np.ones((num_x,num_y))
dipole_field_Ey = pol_vector[1] * dipole_moment * np.ones((num_x,num_y))
dipole_field_Hx = -pol_vector[1] * dipole_moment / nu.Z0 * np.ones((num_x,num_y))
dipole_field_Hy = pol_vector[0] * dipole_moment / nu.Z0 * np.ones((num_x,num_y))
# switch to primed coordinates
dipole_field_Hxp = (dipole_field_Hx * np.cos(grating_rotation)
+ dipole_field_Hy * np.sin(grating_rotation))
dipole_field_Hyp = (-dipole_field_Hx * np.sin(grating_rotation)
+ dipole_field_Hy * np.cos(grating_rotation))
# Our grating.characterize() data has results of a simulation with unit
# amplitude x-polarized incoming light, and a simulation with y-polarized
# (see S4conventions.py for definitions). We want to write our incoming
# dipole_field as
# x_weight * (x simulation incoming field) + y_weight * (y incoming field)
# and then we know that the output is similarly a sum of the two simulation
# outputs.
# Note that this is the weight for H. H_weight * Z0 == E_weight, because
# Z0=1 in S4 units (Z0 is impedance of free space)
H_xp_weight = dipole_field_Hyp
H_yp_weight = dipole_field_Hxp
# electric and magnetic fields in primed coordinates at each point
# There is a z component too but it doesn't enter far-field calculation
Exp = np.zeros((num_x,num_y), dtype=complex)
Eyp = np.zeros((num_x,num_y), dtype=complex)
Hxp = np.zeros((num_x,num_y), dtype=complex)
Hyp = np.zeros((num_x,num_y), dtype=complex)
# This does the interpolation. Note that we are evaluating each
# interpolating function only once, in a vectorized way, otherwise it is
# super slow.
# make cache to store kxp, kyp, kxp**2+kyp**2 for each grating order
kxp_cache = {}
kyp_cache = {}
kxp2_plus_kyp2_cache = {}
for gc_index, gc in enumerate(gratingcollection_list):
all_orders = {(e['ox'],e['oy']) for g in gc.grating_list for e in g.data}
for ox,oy in all_orders:
# uxp,uyp is propagation direction in air. So use kvac here, not kglass
if (ox,oy) not in kxp_cache:
kxp = kvac * uxp + ox * 2*pi/grating_period
kyp = kvac * uyp + oy * 2*pi/lateral_period
kxp2_plus_kyp2 = kxp**2 + kyp**2
kxp_cache[(ox,oy)] = kxp
kyp_cache[(ox,oy)] = kyp
kxp2_plus_kyp2_cache[(ox,oy)] = kxp2_plus_kyp2
else:
kxp = kxp_cache[(ox,oy)]
kyp = kyp_cache[(ox,oy)]
kxp2_plus_kyp2 = kxp2_plus_kyp2_cache[(ox,oy)]
entries = np.logical_and((kxp2_plus_kyp2 <= kvac**2),
(which_gratingcollection==gc_index))
if entries.sum() == 0:
continue
print('diffraction order', (ox,oy), 'of gc', gc_index,
'; applies at', entries.sum(), 'points', flush=True)
kxp = kxp[entries]
kyp = kyp[entries]
kzp = (k_glass**2-kxp**2-kyp**2)**0.5
# S4 references phases to the pillar-glass interface, center of the
# grating unit cell. Because we want the field at a different point,
# we need a phase propagation factor
phase_from_offcenter = np.exp(1j * (kxp * xp[entries] + kyp * yp[entries]))
points_to_interpolate_at = np.vstack((uxp[entries], uyp[entries], grating_period[entries])).T
if uxp[entries].min() < gc.interpolator_bounds[0]:
raise ValueError('need to calculate at smaller ux!', uxp[entries].min(), gc.interpolator_bounds[0])
if uxp[entries].max() > gc.interpolator_bounds[1]:
raise ValueError('need to calculate at bigger ux!', uxp[entries].max(), gc.interpolator_bounds[1])
if uyp[entries].min() < gc.interpolator_bounds[2]:
raise ValueError('need to calculate at smaller uy!', uyp[entries].min(), gc.interpolator_bounds[2])
if uyp[entries].max() > gc.interpolator_bounds[3]:
raise ValueError('need to calculate at bigger uy!', uyp[entries].max(), gc.interpolator_bounds[3])
if grating_period[entries].min() < gc.interpolator_bounds[4]:
raise ValueError('need to calculate at smaller grating_period!', grating_period[entries].min()/nm, gc.interpolator_bounds[4]/nm)
if grating_period[entries].max() > gc.interpolator_bounds[5]:
raise ValueError('need to calculate at bigger grating_period!', grating_period[entries].max()/nm, gc.interpolator_bounds[5]/nm)
for x_or_y in ('x', 'y'):
H_weight = H_xp_weight[entries] if x_or_y == 'x' else H_yp_weight[entries]
E_weight = H_weight * nu.Z0
for which_amp in ('ampfy', 'ampfx'):
f = gc.interpolators[(wavelength_in_nm, (ox,oy), x_or_y, which_amp)]
amps = f(points_to_interpolate_at)
if which_amp == 'ampfy':
Exp[entries] += (E_weight * amps
* kxp * kyp / (k_glass * kzp) / n_glass
* phase_from_offcenter)
Eyp[entries] += (E_weight * amps
* (-kxp**2 - kzp**2) / (k_glass * kzp) / n_glass
* phase_from_offcenter)
Hxp[entries] += H_weight * amps * phase_from_offcenter
else:
Exp[entries] += (E_weight * amps
* (kyp**2 + kzp**2) / (k_glass * kzp) / n_glass
* phase_from_offcenter)
Eyp[entries] += (E_weight * amps
* -kxp*kyp / (k_glass * kzp) / n_glass
* phase_from_offcenter)
Hyp[entries] += H_weight * amps * phase_from_offcenter
# note that the S4 individual grating simulations assume the light has
# phase 0 at (x,y)=grating_center, z=air-pillar interface.
# Note also that S4 propagates using e^{+ikr}
# Remember, in dipole_field_Hx etc., we included everything but e^ikr
if source_z > -inf:
air_propagation_distance = ((gratingcenter_x - source_x)**2
+ (gratingcenter_y - source_y)**2
+ source_z**2)**0.5
eikr = np.exp(1j * kvac * air_propagation_distance)
Exp *= eikr
Eyp *= eikr
#Ez *= eikr
Hxp *= eikr
Hyp *= eikr
#Hz *= eikr
# double-check signs: If grating_rotation=10deg (first quadrant) and
# Exp=1, Eyp=0 (E points outward), then Ex>0,Ey>0
Ex = Exp * np.cos(grating_rotation) - Eyp * np.sin(grating_rotation)
Ey = Exp * np.sin(grating_rotation) + Eyp * np.cos(grating_rotation)
Hx = Hxp * np.cos(grating_rotation) - Hyp * np.sin(grating_rotation)
Hy = Hxp * np.sin(grating_rotation) + Hyp * np.cos(grating_rotation)
# Note E=H=0 outside lens periphery
############ Next, the center part of the lens! ###############
x = x_meshgrid[in_center]
y = y_meshgrid[in_center]
# closest_indices[j] is the index of the entry in lens_center_summary
# that is closest to (x[j],y[j])
mytree = cKDTree(lens_center_summary[:,0:2])
closest_indices = mytree.query(np.vstack((x,y)).T)[1]
cell_center_x = lens_center_summary[closest_indices, 0]
cell_center_y = lens_center_summary[closest_indices, 1]
which_grating = lens_center_summary[closest_indices, 2].astype(int)
Ex_centerpoints = np.zeros_like(x, dtype=complex)
Ey_centerpoints = np.zeros_like(x, dtype=complex)
Hx_centerpoints = np.zeros_like(x, dtype=complex)
Hy_centerpoints = np.zeros_like(x, dtype=complex)
# how much to weight the results with x-polarized and y-polarized input
H_x_weight = dipole_field_Hy
H_y_weight = dipole_field_Hx
if source_z > -inf:
dx = x - source_x
dy = y - source_y
dz = 0 - source_z
distance = (dx**2 + dy**2 + dz**2)**0.5
# (ux,uy,uz) is the unit vector that the incoming light is traveling.
ux = dx / distance
uy = dy / distance
uz = dz / distance
else:
ux = uy = np.zeros_like(x)
uz = np.ones_like(x)
all_orders = {(e['ox'],e['oy']) for g in hexgridset.grating_list for e in g.data}
x_period = hexgridset.grating_list[0].grating_period
y_period = hexgridset.grating_list[0].lateral_period
for ox,oy in all_orders:
# ux,uy is propagation direction in air. So use kvac here, not kglass
kx = kvac * ux + ox * 2*pi/x_period
ky = kvac * uy + oy * 2*pi/y_period
entries = (kx**2 + ky**2 <= kvac**2)
if entries.sum() == 0:
continue
print('diffraction order', (ox,oy), 'of center; applies at', entries.sum(), 'points', flush=True)
kx = kx[entries]
ky = ky[entries]
kz = (k_glass**2-kx**2-ky**2)**0.5
# S4 references phases to the pillar-glass interface, center of the
# grating unit cell. Because we want the field at a different point,
# we need a phase propagation factor
phase_from_offcenter = np.exp(1j * (kx * (x[entries] - cell_center_x[entries])
+ ky * (y[entries] - cell_center_y[entries])))
points_to_interpolate_at = np.vstack((ux[entries], uy[entries], which_grating[entries])).T
if ux[entries].min() < hexgridset.interpolator_bounds[0]:
raise ValueError('need to calculate at smaller ux!', ux[entries].min(), hexgridset.interpolator_bounds[0])
if ux[entries].max() > hexgridset.interpolator_bounds[1]:
raise ValueError('need to calculate at bigger ux!', ux[entries].max(), hexgridset.interpolator_bounds[1])
if uy[entries].min() < hexgridset.interpolator_bounds[2]:
raise ValueError('need to calculate at smaller uy!', uy[entries].min(), hexgridset.interpolator_bounds[2])
if uy[entries].max() > hexgridset.interpolator_bounds[3]:
raise ValueError('need to calculate at bigger uy!', uy[entries].max(), hexgridset.interpolator_bounds[3])
for x_or_y in ('x', 'y'):
H_weight = H_x_weight[in_center][entries] if x_or_y == 'x' else H_y_weight[in_center][entries]
E_weight = H_weight * nu.Z0
for which_amp in ('ampfy', 'ampfx'):
f = hexgridset.interpolators[(wavelength_in_nm, (ox,oy), x_or_y, which_amp)]
amps = f(points_to_interpolate_at)
if which_amp == 'ampfy':
Ex_centerpoints[entries] += (E_weight * amps
* kx * ky / (k_glass * kz) / n_glass
* phase_from_offcenter)
Ey_centerpoints[entries] += (E_weight * amps
* (-kx**2 - kz**2) / (k_glass * kz) / n_glass
* phase_from_offcenter)
Hx_centerpoints[entries] += H_weight * amps * phase_from_offcenter
else:
Ex_centerpoints[entries] += (E_weight * amps
* (ky**2 + kz**2) / (k_glass * kz) / n_glass
* phase_from_offcenter)
Ey_centerpoints[entries] += (E_weight * amps
* -kx*ky / (k_glass * kz) / n_glass
* phase_from_offcenter)
Hy_centerpoints[entries] += H_weight * amps * phase_from_offcenter
# temp = x_meshgrid*0
# temp2 = temp[in_center]
# temp2[entries] += amps
# temp[in_center] += temp2
# #temp[in_center][entries] = E_weight
# plt.figure()
# plt.imshow(temp.T)
# plt.title(s_or_p + ' ' + which_amp + ' ' + str((ox,oy)))
# plt.colorbar()
#
if source_z > -inf:
air_propagation_distance = ((cell_center_x - source_x)**2
+ (cell_center_y - source_y)**2
+ source_z**2)**0.5
eikr = np.exp(1j * kvac * air_propagation_distance)
Ex_centerpoints *= eikr
Ey_centerpoints *= eikr
Hx_centerpoints *= eikr
Hy_centerpoints *= eikr
Ex[in_center] += Ex_centerpoints
Ey[in_center] += Ey_centerpoints
Hx[in_center] += Hx_centerpoints
Hy[in_center] += Hy_centerpoints
# a = Ex / (dipole_field_Ex*np.exp(1j * kvac * ((x_meshgrid-source_x)**2 + (y_meshgrid-source_y)**2 + source_z**2)**0.5))
# plt.figure()
# plt.imshow(a.real.T)
# plt.colorbar()
# TODO - Check for Possible factor-of-2 error??
local_power_z = dipole_field_Ex * dipole_field_Hy - dipole_field_Ey * dipole_field_Hx
entries = np.logical_or((which_gratingcollection != -1), in_center)
power_passing_through_lens = (local_power_z[entries].sum()
* (x_pts[1]-x_pts[0]) * (y_pts[1]-y_pts[0]))
return Ex, Ey, Hx, Hy, x_pts, y_pts, power_passing_through_lens, n_glass
def build_nearfield_big(source_x, source_y, source_z, source_pol, wavelength,
lens_periphery_summary, lens_center_summary, hexgridset,
x_pts=None, y_pts=None, dipole_moment=1e-30 * nu.C * nu.m):
"""build_nearfield() uses a lot of temporary storage. With lots of
near-field points, this function avoids running out of memory by filling in
a subset of the points at a time"""
pts_at_a_time = 1e7
y_pts_at_a_time = int(pts_at_a_time / x_pts.size)
Ex = np.zeros(shape=(x_pts.size,y_pts.size), dtype=complex)
Ey = np.zeros(shape=(x_pts.size,y_pts.size), dtype=complex)
Hx = np.zeros(shape=(x_pts.size,y_pts.size), dtype=complex)
Hy = np.zeros(shape=(x_pts.size,y_pts.size), dtype=complex)
power_passing_through_lens=0
start = 0
end = min(start+y_pts_at_a_time, y_pts.size)
while start < y_pts.size:
print('running y-index', start, 'to', end, 'out of', y_pts.size, flush=True)
y_pts_now = y_pts[start:end]
Ex_now,Ey_now,Hx_now,Hy_now,_,_,P_now,n_glass = build_nearfield(
source_x=source_x, source_y=source_y, source_z=source_z,
source_pol=source_pol, wavelength=wavelength,
lens_periphery_summary=lens_periphery_summary,
lens_center_summary=lens_center_summary, hexgridset=hexgridset,
x_pts=x_pts, y_pts=y_pts_now, dipole_moment=dipole_moment)
Ex[:, start:end] = Ex_now
Ey[:, start:end] = Ey_now
Hx[:, start:end] = Hx_now
Hy[:, start:end] = Hy_now
power_passing_through_lens += P_now
start = end
end = min(start+y_pts_at_a_time, y_pts.size)
return Ex, Ey, Hx, Hy, x_pts, y_pts, power_passing_through_lens, n_glass