-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathgrating.lua
459 lines (406 loc) · 17 KB
/
grating.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
--(C) 2015 Steven Byrnes
--This is the lua script that S4 runs. Generally you don't run this yourself, you let Python call it
--(see grating.py)
pi = math.pi
degree = pi / 180
math.randomseed(os.time())
function almost_equal(a,b,tol)
return math.abs(a-b) <= tol * (math.abs(a) + math.abs(b))
end
function str_from_complex(a)
return string.format('%.4f + %.4f i', a[1], a[2])
end
function polar_str_from_complex(a)
local phase = math.atan2(a[1], a[2])
if phase < 0 then
phase = phase + 2*pi
end
return string.format('amp:%.4f, phase:%.4fdeg', math.sqrt(a[1]^2 + a[2]^2), phase/deg)
end
function mergeTables(t1, t2)
--for hash tables. With duplicate entries, t2 will overwrite.
local out = {}
for k,v in pairs(t1) do out[k] = v end
for k,v in pairs(t2) do out[k] = v end
return out
end
-- read parameters from configuration files (hopefully just now outputted by Python)
-- all lengths in microns
f = assert(io.open("temp/grating_setup.txt", "r"))
what_to_do = f:read("*line")
assert(what_to_do == '1' or what_to_do == '2')
if what_to_do == '1' then what_to_do = 'fom' end
if what_to_do == '2' then what_to_do = 'characterize' end
if what_to_do == 'fom' then
grating_period = tonumber(f:read("*line")) * 1e6
lateral_period = tonumber(f:read("*line")) * 1e6
angle_in_air = tonumber(f:read("*line"))
n_glass = tonumber(f:read("*line"))
nTiO2 = tonumber(f:read("*line"))
cyl_height = tonumber(f:read("*line")) * 1e6
--num_G is the number of modes to include. Higher = slower but more accurate
num_G = tonumber(f:read("*line"))
elseif what_to_do == 'characterize' then
grating_period = tonumber(f:read("*line")) * 1e6
lateral_period = tonumber(f:read("*line")) * 1e6
n_glass = tonumber(f:read("*line"))
nTiO2 = tonumber(f:read("*line"))
cyl_height = tonumber(f:read("*line")) * 1e6
num_G = tonumber(f:read("*line"))
--ux,uy is direction cosine
ux_min = tonumber(f:read("*line"))
ux_max = tonumber(f:read("*line"))
uy_min = tonumber(f:read("*line"))
uy_max = tonumber(f:read("*line"))
u_steps = tonumber(f:read("*line"))
wavelength = tonumber(f:read("*line"))
end
--setting either nTiO2 or n_glass to 0 means "use tabulated data".
-- this table is generated by refractive_index.py
if nTiO2 == 0 then
nTiO2_data =
{[450]=2.5,
[500]=2.433,
[525]=2.41,
[550]=2.391,
[575]=2.375,
[580]=2.372,
[600]=2.362,
[625]=2.351,
[650]=2.341}
end
if n_glass == 0 then
nSiO2_data =
{[450]=1.466,
[500]=1.462,
[525]=1.461,
[550]=1.46,
[575]=1.459,
[580]=1.459,
[600]=1.458,
[625]=1.457,
[650]=1.457}
end
f = assert(io.open("temp/grating_xyrra_list.txt", "r"))
xyrra_list = {}
while f:read(0) == '' do
local line = f:read("*line")
--print('line' .. line)
local t={}
local i=1
for str in string.gmatch(line, "([^%s]+)") do
t[i] = tonumber(str)
i = i + 1
end
if #t > 0 then xyrra_list[#xyrra_list+1] = t end
end
function set_up()
--initial setup of a simulation
local S = S4.NewSimulation()
S:SetLattice({grating_period,0}, {0, lateral_period})
S:SetNumG(num_G)
------- Materials -------
--S:AddMaterial(name, {real part of epsilon, imag part of epsilon})
--if nTiO2 or n_glass is 0, don't worry, we'll set it later in
--set_wavelength_angle() when we know the wavelength.
S:AddMaterial("Air", {1,0})
S:AddMaterial("TiO2", {nTiO2^2,0})
S:AddMaterial("Glass", {n_glass^2,0})
------- Layers -------
-- S:AddLayer(name, thickness, default material)
S:AddLayer('Air', 0, 'Air')
S:AddLayer('Cylinders', cyl_height, 'Air')
S:AddLayer('Substrate', 0, 'Glass')
for _,xyrra in ipairs(xyrra_list) do
x,y,rx,ry,angle = unpack(xyrra)
--print(x,y,rx,ry,angle)
--S:SetLayerPatternEllipse(layer, material, center, angle (CCW, in degrees), halfwidths)
S:SetLayerPatternEllipse('Cylinders', 'TiO2', {x,y}, angle, {rx,ry})
end
return S
end
function set_wavelength_angle(arg)
--set the wavelength and angle of incoming light
--S is the result of set_up()
local S = arg.S
local pol = arg.pol
assert((pol == 's') or (pol == 'p'))
local wavelength = arg.wavelength
local incident_theta = arg.incident_theta
local incident_phi = arg.incident_phi
if nTiO2 == 0 then
local nTiO2_now = nTiO2_data[math.floor(wavelength*1000+0.5)]
assert(nTiO2_now > 0)
S:SetMaterial("TiO2", {nTiO2_now^2,0})
end
local n_glass_now
if n_glass == 0 then
n_glass_now = nSiO2_data[math.floor(wavelength*1000+0.5)]
assert(n_glass_now > 0)
S:SetMaterial("Glass", {n_glass_now^2,0})
else
n_glass_now = n_glass
end
local sAmplitude, pAmplitude
if pol == 's' then
sAmplitude = {1,0} -- amplitude and phase
pAmplitude = {0,0}
else
sAmplitude = {0,0}
pAmplitude = {1,0}
end
S:SetFrequency(1/wavelength)
-- we set it up so that the incoming wave is the (0,0) diffraction order
S:SetExcitationPlanewave(
{incident_theta/degree,incident_phi/degree}, -- incidence angles (spherical coordinates: phi in [0,180], theta in [0,360])
sAmplitude, -- s-polarization amplitude and phase (in degrees)
pAmplitude) -- p-polarization amplitude and phase
--futz with these settings to make it more accurate for a given num_G
S:UsePolarizationDecomposition()
S:UseNormalVectorBasis()
--S:UseJonesVectorBasis()
--S:UseSubpixelSmoothing()
--S:SetResolution(4)
return {S, n_glass_now}
end
function fom(arg)
-- Calculate a figure-of-merit, basically the amount of power going into the desired diffraction order.
-- This is used for optimizing the gratings.
--S is output from set_up()
local S = arg.S
local target_diffraction_order = arg.target_diffraction_order
local incident_theta = arg.incident_theta
local pol = arg.pol
local wavelength = arg.wavelength
local inphase = arg.inphase
local S, n_glass_now = unpack(set_wavelength_angle{pol=pol, S=S, wavelength=wavelength,
incident_theta=incident_theta, incident_phi=0})
local outgoing_order_index = S:GetDiffractionOrder(target_diffraction_order,0)
local forw,_ = S:GetAmplitudes('Substrate',0)
local complex_output_amplitude
if pol == 's' then
complex_output_amplitude = forw[outgoing_order_index]
--at normal incidence (i.e. center of lens), it seems that s and p wind up with opposite phases due to some weird convention
--(I think ... I still need to check explicitly). To keep
--everything adding in phase, we need to keep the same s-vs-p phase relation throughout the lens
complex_output_amplitude = {-complex_output_amplitude[1], -complex_output_amplitude[2]}
else
complex_output_amplitude = forw[outgoing_order_index + S:GetNumG()]
end
-- End result: Power in desired diffraction order
if inphase then
return math.abs(complex_output_amplitude[2]) * complex_output_amplitude[2] / n_glass_now / math.cos(incident_theta)
else
return (complex_output_amplitude[1]^2 + complex_output_amplitude[2]^2) / n_glass_now / math.cos(incident_theta)
end
-- We are looking at the imaginary part complex_output_amplitude[2], rather than the absolute
-- value complex_output_amplitude[1]^2 + complex_output_amplitude[2]^2, because we want the
-- output phases of different parts of the lens to agree.
-- We are looking at the imaginary part complex_output_amplitude[2], rather than the real
-- part complex_output_amplitude[1], for no particular reason, they would each work equally
-- well as an optimization target.
-- We are looking at math.abs(complex_output_amplitude[2]) * complex_output_amplitude[2], rather
-- than complex_output_amplitude[2]^2, because we want to have consistent phase, no possible
-- sign-flip.
-- We are using S:GetAmplitudes() rather than S:GetPowerFluxByOrder() because the latter
-- is calculated in the region where the different modes are all overlapping. Also, we want
-- just the s --> s and p --> p polarization-conserved power because it's easier to think
-- about that than the phases of two different polarizations at once. That means it's
-- perhaps an underestimate of collimated power.
--consistency check: The following two should match (at least approximately
--return (complex_output_amplitude[1]^2 + complex_output_amplitude[2]^2) / n_glass_now / math.cos(incident_theta)
-- ..... VS .....
--[[
local incident_power, total_reflected_power = S:GetPowerFlux('Air', 0)
local total_transmitted_power, temp = S:GetPowerFlux('Substrate', 0)
assert(temp==0)
local transmitted_normal_power, back_r, forw_i, back_i = unpack(S:GetPowerFluxByOrder('Substrate',0)[outgoing_order_index])
assert(almost_equal(-total_reflected_power + total_transmitted_power, incident_power, 1e-3))
assert(back_i == 0 and back_r == 0 and forw_i == 0)
return (transmitted_normal_power / incident_power)
--]]
-- This is the formula I was using earlier
--local phase = math.atan2(complex_output_amplitude[1], complex_output_amplitude[2])
-- note: I got the atan2 arguments backwards, so that's really 90 degrees minus the phase. Doesn't matter.
--return (transmitted_normal_power / incident_power) * math.cos(phase)
end
function print_orders(arg)
-- This function will print the complex amplitude for the requested diffraction
-- orders. This is used for far-field calculations.
local S = arg.S
local pol = arg.pol
assert((pol == 's') or (pol == 'p'))
local wavelength = arg.wavelength
-- orders should be an array like {{0,0},{1,0},...} -- diffraction orders to calculate
local orders=arg.orders
assert(orders ~= nil)
--ux,uy are direction cosines. They are outputted to make the results easier to parse,
-- but otherwise are not used
local ux = arg.ux
local uy = arg.uy
local forw,_ = S:GetAmplitudes('Substrate',0)
local _,back = S:GetAmplitudes('Air',0)
for _,order in ipairs(orders) do
local ox,oy = unpack(order)
local index = S:GetDiffractionOrder(ox,oy)
local G = S:GetNumG()
local complex_output_amplitude_fy = forw[index]
local complex_output_amplitude_fx = forw[index + G]
local complex_output_amplitude_ry = back[index]
local complex_output_amplitude_rx = back[index + G]
print(math.floor(wavelength*1000+0.5), pol, arg.ux, arg.uy, ox, oy,
complex_output_amplitude_fy[1], complex_output_amplitude_fy[2],
complex_output_amplitude_fx[1], complex_output_amplitude_fx[2],
complex_output_amplitude_ry[1], complex_output_amplitude_ry[2],
complex_output_amplitude_rx[1], complex_output_amplitude_rx[2])
end
end
function display_fom()
--display figure of merit for optimizing gratings
--order (short for target_diffraction_order) should be -1 for lens, 0 for light passing right through
--inphase is whether or not we demand that the outgoing waves have consistent complex phase
--[[
wavelengths_weights_orders_inphase =
{{0.580, 1, -1, true}}
--]]
---[[
wavelengths_weights_orders_inphase =
{{0.580, 0.5, -1, true},
{0.450, 0.5, 0, true}}
--]]
--[[
wavelengths_weights_orders_inphase =
{{0.500, 1, -1, false},
{0.580, 1, -1, true},
{0.650, 1, -1, false}}
--]]
score_so_far = 0
weight_so_far = 0
for i=1,#wavelengths_weights_orders_inphase,1 do
local wavelength, weight, target_diffraction_order, inphase = unpack(wavelengths_weights_orders_inphase[i])
--right now I'm assuming that if we want light to pass through, we only care about normal incidence
if target_diffraction_order ~= 0 then incident_theta = angle_in_air else incident_theta=0 end
local S = set_up()
local s = fom{pol='s', S=S, wavelength=wavelength,target_diffraction_order=target_diffraction_order,
incident_theta=incident_theta, inphase=inphase}
local p = fom{pol='p', S=S, wavelength=wavelength, target_diffraction_order=target_diffraction_order,
incident_theta=incident_theta, inphase=inphase}
--print('lam:', wavelength, 's:', s, 'p:', p)
score_so_far = score_so_far + (s+p)/2 * weight
weight_so_far = weight_so_far + weight
end
print(score_so_far / weight_so_far)
--S:OutputLayerPatternDescription('Cylinders', 'temp/grating_img.ps')
end
if what_to_do == 'fom' then
display_fom()
do return end
end
function epsilon_map(S)
local f = assert(io.open('temp/grating_eps.txt', 'w'))
local z = cyl_height/2
for x = -grating_period/2,grating_period/2,grating_period/100 do
for y = -lateral_period/2,lateral_period/2,lateral_period/100 do
local eps_r, eps_i = S:GetEpsilon({x,y,z})
f:write(x,' ',y,' ',z,' ',eps_r,' ',eps_i,'\n')
end
end
end
--epsilon_map(S)
function print_fields(S, z)
local num_x = 20
local num_y = 20
for ix=1,num_x,1 do
local x = -grating_period/2 + (ix / num_x) * grating_period
for iy=1,num_y,1 do
local y = -lateral_period/2 + (iy / num_y) * lateral_period
Exr, Eyr, Ezr, Hxr, Hyr, Hzr, Exi, Eyi, Ezi, Hxi, Hyi, Hzi = S:GetFields({x, y, z})
print(x, y, z, Exr, Eyr, Ezr, Hxr, Hyr, Hzr, Exi, Eyi, Ezi, Hxi, Hyi, Hzi)
end
end
end
function characterize(arg)
--characterize a grating by calculating all the complex output amplitudes as a
--function of incoming angle
local S = set_up()
local wavelength = arg.wavelength
local kvac = 2*pi / wavelength
local grating_kx = 2*pi / grating_period
local grating_ky = 2*pi / lateral_period
--ux,uy are the direction cosines, i.e. the x and y components of the unit vector in the direction of the incoming light
local ux_min = arg.ux_min
local ux_max = arg.ux_max
local uy_min = arg.uy_min
local uy_max = arg.uy_max
num_steps = arg.num_steps
for ix=0,num_steps-1,1 do
local ux
if num_steps == 1 then
ux = (ux_min + ux_max)/2
else
ux = ux_min + ix * (ux_max - ux_min) / (num_steps-1)
end
local kx = kvac * ux
for iy=0, num_steps-1,1 do
local uy
if num_steps == 1 then
uy = (uy_min + uy_max)/2
else
uy = uy_min + iy * (uy_max - uy_min) / (num_steps-1)
end
local ky = kvac * uy
if ux^2+uy^2 < 1 then
local theta = math.acos((1-ux^2-uy^2)^0.5)
local phi = math.atan2(uy,ux)
--find the propagating diffraction orders (ox,oy), where (0,0) is by definition the
--incoming wave. Exclude the light that propagates but
--totally-internally-reflects, unless include_tir flag is true. For calculating the
--far-field, we really don't need that stuff, but for near-field consistency checks
--we do.
local k_cutoff
if arg.include_tir == true then
if n_glass > 0 then
k_cutoff = kvac * n_glass
else
k_cutoff = kvac * nSiO2_data[math.floor(wavelength*1000+0.5)]
end
else
k_cutoff = kvac
end
local orders = {}
for ox=-5,5,1 do
for oy=-5,5,1 do
if (kx + ox*grating_kx)^2 + (ky + oy*grating_ky)^2 < k_cutoff^2 then
table.insert(orders, {ox,oy})
end
end
end
for _, pol in ipairs({'s', 'p'}) do
set_wavelength_angle{pol=pol, S=S, wavelength=wavelength, incident_theta=theta, incident_phi=phi}
--ux and uy are sent only for display purposes, not used in the calculation
print_orders{pol=pol, S=S, wavelength=wavelength, orders=orders, ux=ux, uy=uy}
end
end
end
end
end
-- UNCOMMENT THESE LINES FOR S4conventions.py, where I'm figuring out the relation
-- that S4 uses to translate between complex amplitudes and real-space fields
--[[
num_G = 50
pol = 's'
theta = math.asin((ux_min^2 + uy_min^2)^0.5)
phi = math.atan2(uy_min, ux_min)
characterize{num_G=num_G, ux_min=ux_min, ux_max=ux_max, uy_min=uy_min,
uy_max=uy_max, num_steps=u_steps, wavelength=wavelength, include_tir=true}
print('Fields')
S = set_up()
set_wavelength_angle{S=S, pol=pol, wavelength=wavelength, incident_theta=theta, incident_phi=phi}
print_fields(S,-10.0)
do return end
--]]
if what_to_do == 'characterize' then
characterize{ux_min=ux_min, ux_max=ux_max, uy_min=uy_min,
uy_max=uy_max, num_steps=u_steps, wavelength=wavelength}
do return end
end