This repository has been archived by the owner on May 28, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
1275 lines (1059 loc) · 54.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
import json
import copy
import math
from tqdm import tqdm
import torch
import random
import pickle
import numpy as np
np.set_printoptions(threshold=sys.maxsize)
from seqeval.metrics import precision_score, recall_score, f1_score
from collections import OrderedDict
from tensorboardX import SummaryWriter
from transformers import AdamW, get_linear_schedule_with_warmup
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from load_examples import load_and_cache_examples
from sklearn import mixture
from model import save_model_checkpoint, load_model
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def multinomial_prob(dataset_len, alpha=.5):
tot_number_of_sent_in_all_lang = 0
prob = OrderedDict()
for k, v in dataset_len.items():
tot_number_of_sent_in_all_lang += v
for k, v in dataset_len.items():
neu = v
den = tot_number_of_sent_in_all_lang
p = neu/den
prob[k] = p
q = OrderedDict()
q_den = 0.0
for k, v in prob.items():
q_den += (v**alpha)
sum_ = 0.0
for k, v in prob.items():
q[k] = (v**alpha)/q_den
sum_ += q[k]
assert math.fabs(1-sum_) < 1e-2
return q
def iterator_selection_prob(alpha, train_dataset, logger=None):
dataset_len = OrderedDict()
for k, v in train_dataset.items():
dataset_len[k] = len(v)
for k, v in dataset_len.items():
logger.info("Total Number of sentences in {} : {}".format(k, v))
prob = multinomial_prob(dataset_len, alpha=alpha)
logger.info("Language iterator selection probability.")
ret_prob_index, ret_prob_list = [], []
for k,v in prob.items():
ret_prob_index.append(k)
ret_prob_list.append(v)
for k, v in zip(ret_prob_index, ret_prob_list):
logger.info("{} : {}".format(k, v))
return dataset_len, ret_prob_index, ret_prob_list
def softmax(X, theta = 1.0, axis = None):
"""
Compute the softmax of each element along an axis of X.
Parameters
----------
X: ND-Array. Probably should be floats.
theta (optional): float parameter, used as a multiplier
prior to exponentiation. Default = 1.0
axis (optional): axis to compute values along. Default is the
first non-singleton axis.
Returns an array the same size as X. The result will sum to 1
along the specified axis.
"""
# make X at least 2d
y = np.atleast_2d(X)
# find axis
if axis is None:
axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)
# multiply y against the theta parameter,
y = y * float(theta)
# subtract the max for numerical stability
y = y - np.expand_dims(np.max(y, axis = axis), axis)
# exponentiate y
y = np.exp(y)
# take the sum along the specified axis
ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)
# finally: divide elementwise
p = y / ax_sum
# flatten if X was 1D
if len(X.shape) == 1: p = p.flatten()
return p
def set_fp16_training(args, model, optimizer):
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
return model, optimizer
def get_optimizer(args, model):
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps)
model, optimizer = set_fp16_training(args, model, optimizer)
return model, optimizer, scheduler
def save_results(args, best_dev_scores, test_scores_in_best_src_dev, logger):
logger.info(json.dumps(best_dev_scores, indent=4))
logger.info(json.dumps(test_scores_in_best_src_dev, indent=4))
with open(os.path.join(args.output_dir, 'best_dev_scores.json'), 'w') as outfile:
json.dump(best_dev_scores, outfile)
with open(os.path.join(args.output_dir, 'test_scores_in_best_src_dev.json'), 'w') as outfile:
json.dump(test_scores_in_best_src_dev, outfile)
# def save_model_checkpoint(args, key, model, logger):
# key = key.replace(".", "_").replace(";", "_")
# output_dir = os.path.join(args.output_dir, "best_dev_model_{}".format(key))
# if not os.path.exists(output_dir):
# os.makedirs(output_dir)
# model_to_save = model.module if hasattr(model, "module") else model
# model_to_save.save_pretrained(output_dir)
# torch.save(args, os.path.join(output_dir, "training_args.bin"))
# logger.info("Saving model checkpoint to {}".format(output_dir))
def training_loop(
args,
train_dataset, model, tokenizer,
labels, pad_token_label_id,
logger=None,
prev_best_dev_scores = None,
prev_test_scores_in_best_src_dev=None,
prev_best_test_scores=None,
tf_board_header="single"
):
best_dev_scores = {file_name:0 for file_name in args.dev} if prev_best_dev_scores is None else prev_best_dev_scores
test_scores_in_best_src_dev = {} if prev_test_scores_in_best_src_dev is None else prev_test_scores_in_best_src_dev
best_test_scores = {file_name:0 for file_name in args.dev} if prev_best_test_scores is None else prev_best_test_scores
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
if args.local_rank in [-1, 0]:
tb_path = os.path.join(args.output_dir, "tf_board")
if not os.path.exists(tb_path):
os.makedirs(tb_path)
tb_writer = SummaryWriter(tb_path)
logger.info("Evaluate before starting the training loop ...")
logger.info("-"*20)
result_prediction = evaluate(
args, model, tokenizer,
labels, pad_token_label_id,
"dev", langs = args.dev_lang,
logger=logger
)
for key, (result, prediction) in result_prediction.items():
dataset_f1_score = result["f1"]
best_dev_scores[key] = dataset_f1_score
tb_writer.add_scalar("{}_best_dev_{}_F1".format(tf_board_header, key), dataset_f1_score, global_step)
tb_writer.add_scalar("{}_eval_{}_F1".format(tf_board_header, key), dataset_f1_score, global_step)
test_results_prediction = evaluate(
args, model, tokenizer,
labels, pad_token_label_id,
"test", langs = args.tgt_lang,
logger=logger
)
for key1, (result, prediction) in test_results_prediction.items():
rel_key = key+"_"+key1
tb_writer.add_scalar("{}_test_{}_F1".format(tf_board_header, rel_key), result["f1"], global_step)
test_scores_in_best_src_dev[ rel_key ] = result["f1"]
tb_writer.add_scalar("{}_test_on_best_dev_{}_F1".format(tf_board_header, rel_key), result["f1"], global_step)
dataset_len, lang_prob_index, lang_prob = iterator_selection_prob(args.lang_alpha, train_dataset, logger=logger)
train_data_loader = []
for k in lang_prob_index:
if k in train_dataset:
dataset = train_dataset[k]
train_sampler = RandomSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
data_loader = DataLoader(dataset, sampler=train_sampler, batch_size=args.per_gpu_train_batch_size)
train_data_loader.append((k, data_loader))
model, optimizer, scheduler = get_optimizer(args, model)
# Train!
logger.info("***** Running training *****")
logger.info(" Num of batch = {}".format(dataset_len))
logger.info(" Instantaneous batch size per GPU = {}".format(args.per_gpu_train_batch_size))
logger.info(" Gradient Accumulation steps = {}".format(args.gradient_accumulation_steps))
logger.info(" Effective train batch size (w. parallel, distributed & accumulation) = {}".format(
args.per_gpu_train_batch_size * args.gradient_accumulation_steps))
logger.info(" Total optimization steps = {}".format(args.max_steps))
train_iterators = []
for i in range(len(train_data_loader)):
assert train_data_loader[i][0] == lang_prob_index[i]
train_iterators.append(iter(train_data_loader[i][1]))
tot_num_of_iterator = len(train_iterators)
# set_seed(args)
num_of_batch_trained = [ 0 for i in range(tot_num_of_iterator) ]
isUpdated = 0
for step in range(args.max_steps*args.gradient_accumulation_steps):
model.train()
iterator_id = np.random.choice(range(tot_num_of_iterator), p=lang_prob)
try:
batch = train_iterators[iterator_id].__next__()
except StopIteration:
train_iterators[iterator_id] = iter(train_data_loader[iterator_id][1])
batch = train_iterators[iterator_id].__next__()
num_of_batch_trained[ iterator_id ] += 1
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3],
"penalty": args.penalty}
if args.model_type != "distilbert":
# XLM and RoBERTa don't use segment_ids
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None
outputs, per_token_loss = model(**inputs)
loss = outputs[0]
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
if args.alpha_schedule == "random":
alpha = np.random.random_sample()
if alpha == 0.0:
alpha = .1
elif alpha == 1.0:
alhpa = .9
dataset_len, lang_prob_index, lang_prob = iterator_selection_prob(alpha, train_dataset, logger=logger)
current_loss = (tr_loss - logging_loss) / args.logging_steps
current_lr_rate = scheduler.get_lr()[0]
tb_writer.add_scalar("{}_lr".format(tf_board_header), current_lr_rate, global_step)
tb_writer.add_scalar("{}_loss".format(tf_board_header), current_loss, global_step)
logging_loss = tr_loss
logger.info("<-[[O]]-> {}/{} :: loss : {}".format(
step+1, args.max_steps*args.gradient_accumulation_steps, current_loss))
logger.info("Num of batch trained {}".format([(k[0] , v) for k, v in zip(train_data_loader, num_of_batch_trained)] ))
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
result_prediction = evaluate(
args, model, tokenizer,
labels, pad_token_label_id,
"dev", langs = args.dev_lang,
logger=logger
)
for key, (result, prediction) in result_prediction.items():
dataset_f1_score = result["f1"]
tb_writer.add_scalar("{}_eval_{}_F1".format(tf_board_header, key), dataset_f1_score, global_step)
# test_results_prediction = evaluate(
# args, model, tokenizer,
# labels, pad_token_label_id,
# "test", langs = args.tgt_lang,
# logger=logger
# )
# for key1, (result, prediction) in test_results_prediction.items():
# rel_key = key+"_"+key1
# tb_writer.add_scalar("{}_test_{}_F1".format(tf_board_header, rel_key), result["f1"], global_step)
if dataset_f1_score > best_dev_scores[key]:
isUpdated = True
tb_writer.add_scalar("{}_best_dev_{}_F1".format(tf_board_header, key), dataset_f1_score, global_step)
####################
# new best validation set found
####################
best_dev_scores[key] = dataset_f1_score
# lang = key.split(";")[-1]
# for key1, (result, prediction) in test_results_prediction.items():
# rel_key = key+"_"+key1
# test_scores_in_best_src_dev[ rel_key ] = result["f1"]
# tb_writer.add_scalar("{}_test_on_best_dev_{}_F1".format(tf_board_header, rel_key), result["f1"], global_step)
#########################
# Save model checkpoint
#########################
logger.info("New best dev found for : {}".format(key))
save_model_checkpoint(
args, args.output_dir, args.dev_lang,
model,
logger=logger
)
###########################
###########################
# Saving results on disk in json format
###########################
save_results(args, best_dev_scores, test_scores_in_best_src_dev, logger)
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step, isUpdated, best_dev_scores, test_scores_in_best_src_dev
def evaluate(
args,
model, tokenizer, labels,
pad_token_label_id, mode,
prefix="",
langs = "en;es;de;nl;ar;fi",
logger=None,
eval_dataset=None,
head_idx=0
):
if eval_dataset is None:
eval_dataset, guids = load_and_cache_examples(
args, tokenizer, labels, pad_token_label_id,
mode=mode, langs=langs, logger=logger
)
args.eval_batch_size = args.per_gpu_eval_batch_size
all_eval_dataloader = []
for k, dataset in eval_dataset.items():
sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
dataloader = DataLoader(dataset, sampler=sampler, batch_size=args.eval_batch_size)
all_eval_dataloader.append((k, dataloader))
all_result = OrderedDict()
for dataset_index, eval_dataloader in all_eval_dataloader:
logger.info("***** Running evaluation {} ***** (head:{})".format(dataset_index, head_idx))
logger.info(" Num examples = {}".format( len(eval_dataloader) ))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
cnt = 0
out_label_ids = None
model.eval()
total_number_of_sample = 0
for batch in eval_dataloader:
batch = tuple(t.to(args.device) for t in batch)
if cnt % 20 == 0:
logger.info(" Evaluating {}/{}".format(cnt, len(eval_dataloader)))
cnt += 1
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3],
"head_idx": head_idx}
if args.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
outputs, per_token_loss = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
if args.n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
total_number_of_sample += logits.size()[0]
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
logger.info("Total number of sample evaluated : {}".format(total_number_of_sample))
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=2)
label_map = {i: label for i, label in enumerate(labels)}
out_label_list = [[] for _ in range(out_label_ids.shape[0])]
preds_list = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]])
preds_list[i].append(label_map[preds[i][j]])
results = {
"loss": eval_loss,
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list)
}
all_result[dataset_index] = (results, preds_list)
# all_result[dataset_index] = (results, preds_list)
logger.info("***** Eval results {} *****".format(dataset_index))
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return all_result
def export_logit(
args,
model, tokenizer, labels,
pad_token_label_id, mode,
prefix="", langs = "en",
external_data=None,
examples=None,
logger=None,
head_idx=0,
debug = 0
):
eval_dataset, guids = load_and_cache_examples(
args, tokenizer, labels, pad_token_label_id,
mode=mode, langs=langs,
external_data=external_data, examples=examples,
logger=logger
)
# args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
args.eval_batch_size = 1
all_eval_dataloader = []
for k, dataset in eval_dataset.items():
sampler = SequentialSampler(dataset)
dataloader = DataLoader(dataset, sampler=sampler, batch_size=1)
all_eval_dataloader.append((k, dataloader))
pseudo_loss_dict = OrderedDict()
logit_dict = OrderedDict()
orig_lable_dict = OrderedDict()
orig_losss_dict = OrderedDict()
for dataset_index, eval_dataloader in all_eval_dataloader:
logger.info("***** Saving logit {} *****".format(dataset_index))
logger.info(" Num examples = {}".format( len(eval_dataloader) ))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
cnt = 0
pseudo_loss_list = []
logit_bank = []
orig_loss_list = []
out_label_ids = []
for batch in eval_dataloader:
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
#############
# Original label Inference
#############
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3],
"head_idx": head_idx}
sentence_length = np.sum(inputs["labels"].detach().cpu().numpy()!= pad_token_label_id)
if args.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
outputs, per_token_loss = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
orig_loss_list.append([tmp_eval_loss.item(), sentence_length, 0, None])
#############
# pseudo label collection
#############
preds1 = logits.detach().cpu().numpy().argmax(axis=-1)
out_label_ids1 = inputs["labels"].detach().cpu().numpy()
mask = out_label_ids1==pad_token_label_id
preds1[mask] = pad_token_label_id
incorrect_token = np.sum(preds1!=out_label_ids1)
preds2 = list(preds1[0])
assert args.eval_batch_size == 1 # see above line
preds2 = [ i for i in preds2 if i!=pad_token_label_id]
#############
# pseudo label Inference
#############
_inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": torch.from_numpy(preds1).cuda(),
"penalty": args.penalty,
"head_idx": head_idx}
# print(torch.from_numpy(preds1).cuda())
# print(batch[3])
outputs, per_token_loss = model(**_inputs)
pseudo_loss, pseudo_logits = outputs[:2]
pseudo_loss_list.append([pseudo_loss.item(), sentence_length, incorrect_token, preds2])
mask = out_label_ids1!=pad_token_label_id
masked_logits = pseudo_logits.detach().cpu().numpy()[mask]
original_label = out_label_ids1[mask] ################################
logit_bank.append(masked_logits)
out_label_ids.append(list(original_label))
###################################################
cnt += 1
if cnt%100 == 0:
logger.info("{} :: Inference done {}/{} batches".format(dataset_index, cnt, len(eval_dataloader)))
# if debug:
# xtremebreak ##################################
pseudo_loss_dict[dataset_index] = pseudo_loss_list
logit_dict[dataset_index] = logit_bank
orig_lable_dict[dataset_index] = out_label_ids
orig_losss_dict[dataset_index] = orig_loss_list
return pseudo_loss_dict, logit_dict, orig_lable_dict, orig_losss_dict, guids
def get_knn_logit_dist(original_logits, reference_logit, reference_lable, k_size):
distances = np.sqrt((np.square(original_logits[:,np.newaxis]-reference_logit).sum(axis=2)))
min_indices = distances.argsort()[:,0:k_size]
min_distances = np.sort(distances,kind='mergesort')[:,0:k_size]
min_distances_prob = softmax(-min_distances, axis=-1)
sample_logit = np.zeros( (min_distances_prob.shape[0],9) )
sample_lables = reference_lable[min_indices]
for i in range(sample_lables.shape[0]):
for j in range(sample_lables.shape[1]):
idx = sample_lables[i][j]
sample_logit[i][ idx ] += min_distances_prob[i][j]
return sample_logit
def get_knn_logit_dist_torch_clustered(logits, logit_lable_dict, k_size, number_of_class):
global_min_distances = None
global_min_indices = None
global_sample_lable = None
for k, v in logit_lable_dict.items():
torch.cuda.empty_cache()
reference_logit, reference_lable = logit_lable_dict[k]
torch.cuda.empty_cache()
logits = logits.view(-1,1,number_of_class)
torch.cuda.empty_cache()
distances = torch.sqrt(torch.sum((logits-reference_logit)**2, axis=2))
min_distances, min_indices = torch.topk(distances, k=k_size, largest=False)
global_min_distances = min_distances if global_min_distances is None else \
torch.cat((global_min_distances, min_distances), dim=-1)
global_min_indices = min_indices if global_min_indices is None else \
torch.cat((global_min_indices, min_indices), dim=-1)
global_sample_lable = reference_lable[min_indices] if global_sample_lable is None else \
torch.cat((global_sample_lable, reference_lable[min_indices]), dim=-1)
min_distances_prob = torch.softmax(-global_min_distances, axis=-1)
sample_logits = torch.zeros( (min_distances_prob.size()[0]*min_distances_prob.size()[1], number_of_class) )
global_sample_lable_size = global_sample_lable.size()
global_sample_lable = global_sample_lable.view(-1)
sample_logits[ torch.arange(global_sample_lable.shape[0]), global_sample_lable ] = 1
min_distances_prob = min_distances_prob.view(-1)
sample_logits = min_distances_prob[:,None].cuda() * sample_logits.cuda()
sample_logits = sample_logits.view(global_min_indices.size()[0], global_min_indices.size()[1], number_of_class)
sample_logits = torch.mean(sample_logits, axis = -2)
return sample_logits
def get_knn_logit_dist_torch_non_clustered(logits, logit_lable_dict, k_size, number_of_class):
global_min_distances = None
global_min_indices = None
global_sample_lable = None
reference_logit, reference_lable = logit_lable_dict
logits = logits.view(-1,1, number_of_class)
distances = torch.sqrt(torch.sum((logits-reference_logit)**2, axis=2))
min_distances, min_indices = torch.topk(distances, k=k_size, largest=False)
global_min_distances = min_distances if global_min_distances is None else \
torch.cat((global_min_distances, min_distances), dim=-1)
global_min_indices = min_indices if global_min_indices is None else \
torch.cat((global_min_indices, min_indices), dim=-1)
global_sample_lable = reference_lable[min_indices] if global_sample_lable is None else \
torch.cat((global_sample_lable, reference_lable[min_indices]), dim=-1)
min_distances_prob = torch.softmax(-global_min_distances, axis=-1)
sample_logits = torch.zeros( (min_distances_prob.size()[0]*min_distances_prob.size()[1], number_of_class) )
global_sample_lable_size = global_sample_lable.size()
global_sample_lable = global_sample_lable.view(-1)
sample_logits[ torch.arange(global_sample_lable.shape[0]), global_sample_lable ] = 1
min_distances_prob = min_distances_prob.view(-1)
sample_logits = min_distances_prob[:,None].cuda() * sample_logits.cuda()
sample_logits = sample_logits.view(global_min_indices.size()[0], global_min_indices.size()[1], number_of_class)
sample_logits = torch.mean(sample_logits, axis = -2)
return sample_logits
def inference(
args,
model,
tokenizer,
labels,
pad_token_label_id,
mode="test",
path="dumped/test/nl.train.iob2.logit",
prefix="",
langs = "nl",
lam=.05,
logit_bank_type='non-clustered',
label_bank=None,
logger=None,
logging_iter=100
):
eval_dataset, guids = load_and_cache_examples(
args, tokenizer, labels, pad_token_label_id,
mode = mode, langs=langs, logger=logger
)
args.eval_batch_size = 1
# args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
all_eval_dataloader = []
for k, dataset in eval_dataset.items():
sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
dataloader = DataLoader(dataset, sampler=sampler, batch_size=args.eval_batch_size)
all_eval_dataloader.append((k, dataloader))
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
all_result = OrderedDict()
logit_lable_dict = OrderedDict()
for dataset_index, eval_dataloader in all_eval_dataloader:
# data/es/es.train.iob2;utf-8;es
lang = dataset_index.split(";")[-1]
logit_lable_dict = OrderedDict()
address = path
with open(address, "rb") as filePtr:
lang_logit_bank = pickle.load(filePtr)
if logit_bank_type == "non-clustered":
lang_logit_bank = lang_logit_bank[0]
if label_bank is None:
reference_lable = np.argmax(lang_logit_bank, axis=-1)
else:
reference_lable = np.array(label_bank)
# print(reference_lable.shape)
logit_lable_dict = (torch.from_numpy(lang_logit_bank).cuda(), torch.from_numpy(reference_lable).cuda())
elif logit_bank_type == "clustered":
lang_logit_bank = lang_logit_bank[1]
for k, v in lang_logit_bank.items():
reference_lable = np.argmax(v, axis=-1)
logit_lable_dict[k] = (torch.from_numpy(v).cuda(), torch.from_numpy(reference_lable).cuda())
if len(logit_lable_dict) == 0:
continue
logger.info("***** Running evaluation {} *****".format(dataset_index))
logger.info(" Num examples = {}".format( len(eval_dataloader) ))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
cnt = 0
predictions = []
original_label_id = []
total_batch = len(eval_dataloader)
for batch in eval_dataloader:
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
outputs, per_token_loss = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
if logit_bank_type == "non-clustered":
knn_logit = get_knn_logit_dist_torch_non_clustered(logits, logit_lable_dict, args.k_size, logits.size()[-1])
elif logit_bank_type == "clustered":
knn_logit = get_knn_logit_dist_torch_clustered(logits, logit_lable_dict, args.k_size, logits.size()[-1])
else:
raise NotImplementedError()
knn_logit = knn_logit.view(logits.size())
convex_comb_logits = lam * torch.softmax(logits, axis=-1) + (1-lam) * torch.softmax(knn_logit, axis=-1)
label_mask = (inputs['labels'].detach().cpu().numpy() != pad_token_label_id)
original_label = inputs['labels'].detach().cpu().numpy()[label_mask]
original_logits = convex_comb_logits.detach().cpu().numpy()[label_mask]
predictions.append(list(np.argmax(original_logits, axis=1)))
original_label_id.append(list(original_label))
assert original_logits.shape[0] == original_label.shape[0]
cnt += 1
if cnt % logging_iter == 0 and cnt > 0:
logger.info("{} :: inference done {}/{}".format(dataset_index, cnt, total_batch))
label_map = {i: label for i, label in enumerate(labels)}
out_label_list = []
preds_list = []
for pred, orig in zip(predictions, original_label_id):
assert len(pred) == len(orig)
temp_pred = []
temp_orig = []
for pred_label_idx, orig_label_idx in zip(pred, orig):
temp_pred.append(label_map[pred_label_idx])
temp_orig.append(label_map[orig_label_idx])
preds_list.append(temp_pred)
out_label_list.append(temp_orig)
results = {
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list)
}
all_result[dataset_index] = results #, preds_list)
logger.info("***** Eval results {} *****".format(dataset_index))
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return all_result
def task_validation(
args,
model, tokenizer, labels, pad_token_label_id,
multi_head_best_dev_scores, multi_head_test_scores_in_best_src_dev,
tb_writer, tf_board_header, global_step,
logger=None
):
avg_dev_f1 = {}
for head_idx in range(args.num_of_heads):
result_prediction = evaluate(
args, model, tokenizer,
labels, pad_token_label_id,
"dev", langs = args.dev_lang,
logger=logger,
head_idx = head_idx
)
for key, (result, prediction) in result_prediction.items():
if key not in avg_dev_f1:
avg_dev_f1[key] = [0, []]
avg_dev_f1[key][0] += result["f1"]
avg_dev_f1[key][1].append(result["f1"])
for key, v in avg_dev_f1.items():
avg_dev_f1[key][0] = avg_dev_f1[key][0]/float(args.num_of_heads)
tb_writer.add_scalar("{}_eval_{}_F1".format(tf_board_header, key), avg_dev_f1[key][0], global_step)
if key not in multi_head_best_dev_scores:
multi_head_best_dev_scores[key] = [0, []]
# Test Result Prediction
avg_test_f1 = {}
for head_idx in range(args.num_of_heads):
test_results_prediction = evaluate(
args, model, tokenizer,
labels, pad_token_label_id,
"test", langs = args.tgt_lang,
logger=logger,
head_idx=head_idx
)
for key, (result, prediction) in test_results_prediction.items():
if key not in avg_test_f1:
avg_test_f1[key] = [0, []]
avg_test_f1[key][0] += result["f1"]
avg_test_f1[key][1].append(result["f1"])
for key, v in avg_test_f1.items():
avg_test_f1[key][0] = avg_test_f1[key][0]/float(args.num_of_heads)
tb_writer.add_scalar("{}_test_{}_F1".format(tf_board_header, key), avg_test_f1[key][0], global_step)
for key, v in avg_dev_f1.items():
if avg_dev_f1[key][0] > multi_head_best_dev_scores[key][0]:
multi_head_best_dev_scores[key] = avg_dev_f1[key]
#########################
# Save model checkpoint
#########################
logger.info("New best dev found for : {}".format(key))
save_model_checkpoint(
args, args.output_dir, args.dev_lang,
model,
logger=logger
)
###########################
for test_key, test_v in avg_test_f1.items():
rel_key = key+"_"+test_key
multi_head_test_scores_in_best_src_dev[ rel_key ] = avg_test_f1[test_key]
return multi_head_best_dev_scores, multi_head_test_scores_in_best_src_dev
def multi_head_training_loop(
args,
train_dataset, model, tokenizer,
labels, pad_token_label_id,
logger=None,
multi_head_best_dev_scores = {},
multi_head_test_scores_in_best_src_dev={},
tf_board_header="single"
):
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
if args.local_rank in [-1, 0]:
tb_path = os.path.join(args.output_dir, "tf_board")
if not os.path.exists(tb_path):
os.makedirs(tb_path)
tb_writer = SummaryWriter(tb_path)
logger.info("Evaluate before starting the training loop ...")
logger.info("-"*20)
multi_head_best_dev_scores, multi_head_test_scores_in_best_src_dev = task_validation(
args,
model, tokenizer, labels, pad_token_label_id,
multi_head_best_dev_scores, multi_head_test_scores_in_best_src_dev,
tb_writer, tf_board_header, 0,
logger=logger
)
dataset_len, lang_prob_index, lang_prob = iterator_selection_prob(args.lang_alpha, train_dataset, logger=logger)
train_data_loader = []
for k in lang_prob_index:
if k in train_dataset:
dataset = train_dataset[k]
train_sampler = RandomSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
data_loader = DataLoader(dataset, sampler=train_sampler, batch_size=args.per_gpu_train_batch_size)
train_data_loader.append((k, data_loader))
model, optimizer, scheduler = get_optimizer(args, model)
# Train!
logger.info("***** Running training *****")
logger.info(" Num of batch = {}".format(dataset_len))
logger.info(" Instantaneous batch size per GPU = {}".format(args.per_gpu_train_batch_size))
logger.info(" Gradient Accumulation steps = {}".format(args.gradient_accumulation_steps))
logger.info(" Effective train batch size (w. parallel, distributed & accumulation) = {}".format(
args.per_gpu_train_batch_size * args.gradient_accumulation_steps))
logger.info(" Total optimization steps = {}".format(args.max_steps))
train_iterators = []
for i in range(len(train_data_loader)):
assert train_data_loader[i][0] == lang_prob_index[i]
train_iterators.append(iter(train_data_loader[i][1]))
tot_num_of_iterator = len(train_iterators)
# set_seed(args)
num_of_batch_trained = [ 0 for i in range(tot_num_of_iterator) ]
isUpdated = 0
for step in range(args.max_steps*args.gradient_accumulation_steps):
model.train()
iterator_id = np.random.choice(range(tot_num_of_iterator), p=lang_prob)
try:
batch = train_iterators[iterator_id].__next__()
except StopIteration:
train_iterators[iterator_id] = iter(train_data_loader[iterator_id][1])
batch = train_iterators[iterator_id].__next__()
num_of_batch_trained[ iterator_id ] += 1
batch = tuple(t.to(args.device) for t in batch)
_head_idx = np.random.choice(range(args.num_of_heads), p=[1/3.0, 1/3.0, 1/3.0])
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3],
"penalty": args.penalty,
"head_idx": _head_idx}
if args.model_type != "distilbert":
# XLM and RoBERTa don't use segment_ids
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None
outputs, per_token_loss = model(**inputs)
loss = outputs[0]
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
if args.alpha_schedule == "random":
alpha = np.random.random_sample()
if alpha == 0.0:
alpha = .1
elif alpha == 1.0:
alhpa = .9
dataset_len, lang_prob_index, lang_prob = iterator_selection_prob(alpha, train_dataset, logger=logger)
current_loss = (tr_loss - logging_loss) / args.logging_steps
current_lr_rate = scheduler.get_lr()[0]
tb_writer.add_scalar("{}_lr".format(tf_board_header), current_lr_rate, global_step)
tb_writer.add_scalar("{}_loss".format(tf_board_header), current_loss, global_step)
logging_loss = tr_loss
logger.info("<-[[O]]-> {}/{} :: loss : {}".format(
step+1, args.max_steps*args.gradient_accumulation_steps, current_loss))
logger.info("Num of batch trained {}".format([(k[0] , v) for k, v in zip(train_data_loader, num_of_batch_trained)] ))
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
# Dev Result Prediction
multi_head_best_dev_scores, multi_head_test_scores_in_best_src_dev = task_validation(
args,
model, tokenizer, labels, pad_token_label_id,
multi_head_best_dev_scores, multi_head_test_scores_in_best_src_dev,
tb_writer, tf_board_header, global_step,
logger=logger
)
###########################
# Saving results on disk in json format
###########################
save_results(args, multi_head_best_dev_scores, multi_head_test_scores_in_best_src_dev, logger)
if args.local_rank in [-1, 0]: