This repository has been archived by the owner on May 28, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
390 lines (371 loc) · 18.5 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import argparse
def data_params(parser):
group = parser.add_argument_group('Dataset params.')
group.add_argument("--train",
nargs='*',
default=["data/en/en.train.iob2;utf-8;en",
"data/es/es.train.iob2;utf-8;es",
"data/de/de.train.iob2;latin-1;de",
"data/nl/nl.train.iob2;utf-8;nl",
"data/ar/ar.train.iob2;utf-8;ar",
"data/fi/fi.train.iob2;utf-8;fi"],
help="Train set location. Value-type: list(string)")
group.add_argument("--dev",
nargs='*',
default=["data/en/en.testa.iob2;utf-8;en",
"data/es/es.testa.iob2;utf-8;es",
"data/de/de.testa.iob2;latin-1;de",
"data/nl/nl.testa.iob2;utf-8;nl",
"data/ar/ar.testa.iob2;utf-8;ar",
"data/fi/fi.testa.iob2;utf-8;fi"],
help="Validation set location. Value-type: list(string)")
group.add_argument("--test",
nargs='*',
default=["data/en/en.testb.iob2;utf-8;en",
"data/es/es.testb.iob2;utf-8;es",
"data/de/de.testb.iob2;latin-1;de",
"data/nl/nl.testb.iob2;utf-8;nl",
"data/ar/ar.testb.iob2;utf-8;ar",
"data/fi/fi.testb.iob2;utf-8;fi"],
help="Validation set location. Value-type: list(string)")
group.add_argument("--logit_bank_address_keys",
nargs='*',
default=[None],
help="Validation set location. Value-type: list(string)")
group.add_argument("--external_data",
nargs='*',
default=["dumped/lm_aug_pickle/dataset-data_de_de_train_iob2_latin-1_de-aug_type-successive_max-aug_per-10-num_of_aug-1-only_ner_aug-0-topk-1-train_data_percentage-100-seed-1234/de.train.iob2.aug;pkl;de"],
help="Validation set location. Value-type: list(string)")
group.add_argument("--src_lang",
default="en",
type=str,
help="Name of the source language. Value-type: (str)")
group.add_argument("--dev_lang",
default="en",
type=str,
help="Name of the development language (model tuned by this language dev. set). Value-type: (str)")
group.add_argument("--tgt_lang",
default="en",
type=str,
help="Name of the tgt language. Value-type: (str)")
group.add_argument("--aug_lang",
default="en;es;de;nl;ar;fi",
type=str,
help="Augmented language. Value-type: (str)")
group.add_argument("--aug_label_propagate",
default="en",
type=str,
help="Which lang label will be propagated. Value-type: (str)")
group.add_argument("--lang_alpha",
default=.5,
type=float,
help="Name of the tgt language. Value-type: (str)")
parser.add_argument("--do_lower_case",
default=0,
type=int,
help="Do we lowercase the dataset.")
group.add_argument("--label",
default=None,
type=str,
help="Path where label file is saved.")
def model_params(parser):
group = parser.add_argument_group('Model params.')
group.add_argument("--model_type",
default="bert",
type=str,
help="Model type selected in the list")
group.add_argument("--model_name_or_path",
default="bert-base-multilingual-cased",
type=str,
help="Path to pre-trained model or shortcut name selected in the list")
group.add_argument("--thetas",
nargs='*',
default=[],
help="Different types of pretrained model path. Value-type: list(string)")
group.add_argument("--config_name",
default="",
type=str,
help="Pretrained config name or path if not the same as model_name")
group.add_argument("--tokenizer_name",
default="bert-base-multilingual-cased",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
group.add_argument("--output_dir",
default="./dumped",
type=str,
help="The output directory where the model predictions and checkpoints will be written.")
group.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
group.add_argument("--dropout",
default=.1,
type=float,
help="Dropout value of the hidden representation of the LM.")
group.add_argument("--max_seq_length", default=280, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
group.add_argument("--num_of_heads",
default=1,
type=int,
help="Total number of head on top of pretrained LM.")
def noise_model_params(parser):
group = parser.add_argument_group('Noise model params.')
group.add_argument("--noise_threshold",
default=0, type=int,
help="Maximum number of wrong labels can exists in a correct sentence (for debugging purpose).")
group.add_argument("--n_mixture_component",
default=5,
type=int,
help="Number of component in noise model.")
group.add_argument("--n_mixture_select",
default=1,
type=int,
help="Number of mixture component data to be selected.")
group.add_argument("--posterior_threshold",
nargs='*',
default=[.7],
type=float,
help="Posterior probability threshold.")
group.add_argument("--covariance_type",
default="full",
type=str,
help="Covariance type.",
choices=["full", "diag", "tied", "spherical"])
group.add_argument("--min_length_restriction",
default=0,
type=int,
help="Minimum length of the sentences choose to do training (for debugging purpose).")
group.add_argument("--max_length_restriction",
default=150,
type=int,
help="Maximum length of the sentences choose to do training (for debugging purpose).")
group.add_argument("--aug_mode",
default="train",
type=str,
help="Pseudo label model. From where the dataset will be read. "
"`aug` will read from `--external_data` parameters.",
choices=["train", "dev", "aug"])
group.add_argument("--aug_desc",
default="0:src;src_aug;tgt_self;tgt_aug|1:src;src_aug;tgt_self;tgt_aug",
type=str,
help="Source or target or both augmentation seperated by ;")
def logistics_params(parser):
group = parser.add_argument_group('Logistics params.')
group.add_argument("--do_train",
action="store_true",
help="Whether to run training.")
group.add_argument("--process_augmentation",
action="store_true",
help="Infer training dataset.")
group.add_argument("--do_eval",
action="store_true",
help="Whether to run eval on the dev set.")
group.add_argument("--do_ensamble_eval",
action="store_true",
help="Whether to run eval on the dev set.")
group.add_argument("--ensamble_type",
default="logit",
type=str,
help="Logit level ensamble or output level ensamble.",
choices=["logit", "output"])
group.add_argument("--lazy_inference",
action="store_true",
help="Do lazy inference.")
group.add_argument("--export_pseudo_data",
action="store_true",
help="Whether to run predictions on the test set.")
group.add_argument("--evaluate_during_training",
action="store_true",
help="Whether to run evaluation during training at each logging step.")
group.add_argument("--per_gpu_train_batch_size",
type=int,
default=4,
help="Batch size per GPU/CPU for evaluation.")
group.add_argument("--per_gpu_eval_batch_size",
type=int,
default=32,
help="Batch size per GPU/CPU for evaluation.")
group.add_argument("--gradient_accumulation_steps",
type=int,
default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.")
group.add_argument("--logging_steps",
type=int,
default=50,
help="Log every X updates steps.")
group.add_argument("--save_steps",
type=int,
default=50,
help="Save checkpoint every X updates steps.")
group.add_argument("--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
group.add_argument("--no_cuda",
action="store_true",
help="Avoid using CUDA when available")
group.add_argument("--overwrite_output_dir",
action="store_true",
help="Overwrite the content of the output directory")
group.add_argument("--overwrite_cache",
action="store_true",
help="Overwrite the cached training and evaluation sets")
group.add_argument("--seed",
type=int,
default=42,
help="random seed for initialization")
group.add_argument("--logit_dict_cache_address",
type=str,
default="logit_dict",
help="Name of the logit_dict_cache")
def training_params(parser):
group = parser.add_argument_group('Training params.')
group.add_argument("--learning_rate",
default=2e-5,
type=float,
help="The initial learning rate for Adam.")
group.add_argument("--weight_decay",
default=0.01,
type=float,
help="Weight decay if we apply some.")
group.add_argument("--adam_epsilon",
default=1e-8,
type=float,
help="Epsilon for Adam optimizer.")
group.add_argument("--max_grad_norm",
default=1.0,
type=float,
help="Max gradient norm.")
group.add_argument("--num_train_epochs",
default=3,
type=int,
help="Total number of training epochs to perform.")
group.add_argument("--semi_sup_start_epoch",
default=0,
type=int,
help="Starting semi sup epoch.")
group.add_argument("--max_steps",
default=22000,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
group.add_argument("--semi_sup_max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
group.add_argument("--warmup_steps",
default=2200,
type=int,
help="Linear warmup over percentage of batch sample.")
# group.add_argument("--warmup_percentage",
# default=-1,
# type=int,
# help="Percentage of training sample that will be used for warmup.")
group.add_argument("--train_data_percentage",
default=100,
type=int,
help="Percentage of training data that will be selected.")
group.add_argument("--lam",
default=.5,
type=float,
help="Lambda for for augmented loss.")
group.add_argument("--k_size",
default=3,
type=int,
help="Integer size of KNN.")
group.add_argument("--logit_bank_type",
default="non-clustered",
type=str,
help="Type of logit bank.")
group.add_argument("--penalty",
default=0,
type=int,
help="Add a negative NegEntropy term with loss.")
group.add_argument("--alpha_schedule",
default="fixed",
type=str,
help="If alphas value is choosen randomly.",
choices=["fixed", "random", "bionomial"])
def dist_params(parser):
group = parser.add_argument_group('Distributed params.')
group.add_argument("--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
group.add_argument("--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
group.add_argument("--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank")
group.add_argument("--server_ip",
type=str,
default="",
help="For distant debugging.")
group.add_argument("--server_port",
type=str,
default="",
help="For distant debugging.")
def semi_sup_params(parser):
group = parser.add_argument_group("Semi supervised params.")
group.add_argument("--do_semi_sup_training",
action="store_true",
help="Whether to do semi-supervised run training.")
group.add_argument("--semi_sup_type",
default="classical",
help="Type of the semi supervised learning.")
group.add_argument("--top_k",
default=50,
type=int,
help="Top k\% of confident data.")
group.add_argument("--top_k_increment",
default=10,
type=int,
help="Top k\% increment of each semi_sup_epoch.")
group.add_argument("--max_semi_sup_epoch",
default=3,
type=int,
help="Maximum number of semi-sup epoch.")
group.add_argument("--retrain",
default=0,
type=int,
help="If the training starts from begining or not.")
group.add_argument("--partial_train_in_semi_sup_epochs",
default=0,
type=int,
help="IIf activated, in first epoch only source language will be trained and in the last epoch tgt lang will be trained.")
group.add_argument("--data_distil_type",
default='top_k',
type=str,
help="Data Distil type.")
group.add_argument("--merge_datasets",
default=0,
type=int,
help="Merge all datasets.")
group.add_argument("--agreement_param",
default=1,
type=int,
help="1: intersec of prediction 2. union of prediction",
choices=[1, 2])
def load_args():
parser = argparse.ArgumentParser("Cross-lingual Contextual NER.")
data_params(parser)
model_params(parser)
noise_model_params(parser)
logistics_params(parser)
training_params(parser)
dist_params(parser)
semi_sup_params(parser)
args = parser.parse_args()
args = args
args.learning_rate = float(args.learning_rate)
if os.path.exists(args.output_dir) \
and len(os.listdir(args.output_dir))>1 \
and args.do_train \
and not args.overwrite_output_dir:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir))
return args