-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_cleaning.py
80 lines (63 loc) · 2.8 KB
/
data_cleaning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
### function that remove data point on water
### This function is from Albert van Breemen
### https://www.kaggle.com/breemen/nyc-taxi-fare-data-exploration
def remove_datapoints_from_water(df):
def lonlat_to_xy(longitude, latitude, dx, dy, BB):
return (dx*(longitude - BB[0])/(BB[1]-BB[0])).astype('int'), (dy - dy*(latitude - BB[2])/(BB[3]-BB[2])).astype('int')
# define bounding box
BB = (-74.5, -72.8, 40.5, 41.8)
# read nyc mask and turn into boolean map with
# land = True, water = False
nyc_mask = plt.imread('https://aiblog.nl/download/nyc_mask-74.5_-72.8_40.5_41.8.png')[:,:,0] > 0.9
# calculate for each lon,lat coordinate the xy coordinate in the mask map
pickup_x, pickup_y = lonlat_to_xy(df.pickup_longitude, df.pickup_latitude,
nyc_mask.shape[1], nyc_mask.shape[0], BB)
dropoff_x, dropoff_y = lonlat_to_xy(df.dropoff_longitude, df.dropoff_latitude,
nyc_mask.shape[1], nyc_mask.shape[0], BB)
# calculate boolean index
idx = nyc_mask[pickup_y, pickup_x] & nyc_mask[dropoff_y, dropoff_x]
# return only datapoints on land
return df[idx]
### function used for data cleaning
def clean_data(df):
### remove records that contain NaN value
df = df.dropna(how = 'any', axis = 'rows')
### remove records that contain longitude outside of the range of test data
df = df[(df['pickup_longitude'] <= -72.8)
& (df['pickup_longitude'] >= -74.5)]
df = df[(df['dropoff_longitude'] <= -72.8)
& (df['dropoff_longitude'] >= -74.5)]
df = df[(df['pickup_latitude'] <= 41.8)
& (df['pickup_latitude'] >= 40.5)]
df = df[(df['dropoff_latitude'] <= 41.8)
& (df['dropoff_latitude'] >= 40.5)]
### remove records that their fare amount are equal to 0 or exceed 200
df = df[(df['fare_amount'] > 0) & (df['fare_amount'] <= 200)]
### remove records that have location on the sea
df = remove_datapoints_from_water(df)
return df
### function that clean the whole data and save the result in current directory
def clean_whole_data(infilename, outfilename, chunksize):
iteration = 0
for data in pd.read_csv(infilename, chunksize = chunksize):
x = clean_data(data)
if iteration == 0:
x.to_csv(outfilename,
index=False,
header=True,
mode='w')#size of data to append for each loop
else:
x.to_csv("outfilename",
index=False,
header=False,
mode='a')#size of data to append for each loop
iteration += 1
print(iteration)
def main():
infilename = 'train.csv'
outfilename = 'cleaned_train.csv'
chunksize = 100000
clean_whole_data(infilename, outfilename, chunksize)