-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsortin.F90
174 lines (142 loc) · 5.19 KB
/
sortin.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
!===================SUBROUTINE SORTIN===================================
subroutine sortin( eyy, pco2y, range, gammas, ic)
!=======================================================================
!
! ARRANGES SUCCESSIVE PCO2/ERROR PAIRS IN ORDER OF INCREASING PCO2.
! ESTIMATES NEXT GUESS FOR PCO2 USING COMBINATION OF LINEAR AND
! QUADRATIC FITS.
!
!=======================================================================
use kinds
implicit none
!Bio...INPUT VARIABLES
integer(kind=int_kind),intent(in) :: ic ! iteration count
real(kind=dbl_kind),intent(in) :: range !
real(kind=dbl_kind),intent(in) :: gammas !
!Bio...OUTPUT VARIABLES...
real(kind=dbl_kind),intent(inout),dimension(6) :: eyy !
real(kind=dbl_kind),intent(inout),dimension(6) :: pco2y !
!Bio...LOCAL VARIABLES
integer(kind=int_kind) :: i,j,n,i1,i2,i3,isp,is,ix
logical (kind=log_kind) :: bitx !
real(kind=dbl_kind) :: one !
real(kind=dbl_kind) :: pmin !
real(kind=dbl_kind) :: emin !
real(kind=dbl_kind) :: a !
real(kind=dbl_kind) :: b !
real(kind=dbl_kind) :: pco2yl !
real(kind=dbl_kind) :: pco2yq !
real(kind=dbl_kind) :: ac1 !
real(kind=dbl_kind) :: ac2 !
real(kind=dbl_kind) :: bc1 !
real(kind=dbl_kind) :: bc2 !
real(kind=dbl_kind) :: cc1 !
real(kind=dbl_kind) :: cc2 !
real(kind=dbl_kind) :: aterm !
real(kind=dbl_kind) :: bterm !
real(kind=dbl_kind) :: cterm !
real(kind=dbl_kind) :: pco2b !
real(kind=dbl_kind) :: eyyisp !
real(kind=dbl_kind) :: eyyis !
real(kind=dbl_kind) :: eyyi1 !
real(kind=dbl_kind) :: eyyi2 !
real(kind=dbl_kind) :: eyyi3 !
real(kind=dbl_kind) :: pco2yisp !
real(kind=dbl_kind) :: pco2yis !
real(kind=dbl_kind) :: pco2yi1 !
real(kind=dbl_kind) :: pco2yi2 !
real(kind=dbl_kind) :: pco2yi3 !
one = 1.0_dbl_kind
if( ic < 4 ) then
pco2y(1) = gammas + 0.5_dbl_kind*range
pco2y(2) = gammas &
+ range*( 0.5_dbl_kind - 0.3_dbl_kind*sign(one,eyy(1)) )
pco2y(3) = pco2y(1)- (pco2y(1)-pco2y(2)) &
/(eyy(1)-eyy(2)+1.e-10_dbl_kind)*eyy(1)
pmin = min( pco2y(1), pco2y(2) )
emin = min( eyy(1), eyy(2) )
if ( emin > 0. .and. pco2y(3) > pmin ) &
pco2y(3) = gammas
else
n = ic - 1
bitx = abs(eyy(n)) > 0.1
if(.not. bitx) pco2y(ic) = pco2y(n)
if(bitx) then
do j = 2, n
a = eyy(j)
b = pco2y(j)
do i = j-1,1,-1
if(eyy(i) <= a ) go to 100
eyy(i+1) = eyy(i)
pco2y(i+1) = pco2y(i)
enddo ! i loop
i = 0
100 continue
eyy(i+1) = a
pco2y(i+1) = b
enddo ! j loop
endif
!-----------------------------------------------------------------------
if(bitx) then
pco2b = 0.
is = 1
endif
do ix = 1, n
if(bitx) then
if( eyy(ix) < 0. ) then
pco2b = pco2y(ix)
is = ix
endif
endif
enddo
if(bitx) then
i1 = is-1
i1 = MAX(1, i1)
i1 = min(n-2, i1)
i2 = i1 + 1
i3 = i1 + 2
isp = is + 1
isp = min0( isp, n )
is = isp - 1
eyyisp = eyy(isp)
eyyis = eyy(is)
eyyi1 = eyy(i1)
eyyi2 = eyy(i2)
eyyi3 = eyy(i3)
pco2yisp = pco2y(isp)
pco2yis = pco2y(is)
pco2yi1 = pco2y(i1)
pco2yi2 = pco2y(i2)
pco2yi3 = pco2y(i3)
endif
if(bitx) then
!itb...Neil Suits' patch to check for zero in the denominator...
if(eyyis /= eyyisp)then
pco2yl=pco2yis - (pco2yis-pco2yisp) / (eyyis-eyyisp)*eyyis
else
pco2yl = pco2yis * 1.01
endif
! METHOD USING A QUADRATIC FIT
ac1 = eyyi1*eyyi1 - eyyi2*eyyi2
ac2 = eyyi2*eyyi2 - eyyi3*eyyi3
bc1 = eyyi1 - eyyi2
bc2 = eyyi2 - eyyi3
cc1 = pco2yi1 - pco2yi2
cc2 = pco2yi2 - pco2yi3
!itb...Neil Suits' patch to prevent zero in denominator...
if(bc1*ac2-ac1*bc2 /= 0.0 .and. ac1 /= 0.0_dbl_kind)then
bterm = (cc1*ac2-cc2*ac1)/(bc1*ac2-ac1*bc2)
aterm = (cc1-bc1*bterm)/ac1
cterm = pco2yi2-aterm*eyyi2*eyyi2-bterm*eyyi2
pco2yq= cterm
pco2yq= MAX( pco2yq, pco2b )
pco2y(ic) = ( pco2yl+pco2yq)/2.0_dbl_kind
else
pco2y(ic) = pco2y(ic) * 1.01_dbl_kind
endif
endif
endif
!
! make sure pco2 does not fall below compensation point
pco2y(ic) = MAX(pco2y(ic),gammas+0.01_dbl_kind)
end