-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathQAM.py
317 lines (280 loc) · 14.4 KB
/
QAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Import functions and libraries
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import scipy as scy
import threading,time
import multiprocessing
import sys
import bitarray
import cmath
from scipy.fftpack import fft
from numpy import pi
from numpy import sqrt
from numpy import sin
from numpy import cos
from numpy import exp
from numpy import zeros
from numpy import r_
from scipy.io.wavfile import read as wavread
# DAC - Maps an two bit input to a certain amplitude provided
def TwoBitToAmplitudeMapper(bit1:bool, bit2:bool, amplitude1, amplitude2):
if(~bit1 & ~bit2):
return np.array(-amplitude1)
elif(~bit1 & bit2):
return np.array(-amplitude2)
elif(bit1 & ~bit2):
return np.array(amplitude1)
elif(bit1 & bit2):
return np.array(amplitude2)
else:
return 0
# Used for symbol creation. Returns a decimal number from a 4 bit input
def GetQam16Symbol(bit1:bool, bit2:bool, bit3:bool, bit4:bool):
if(~bit1 & ~bit2 & ~bit3 & ~bit4):
return 0
elif(~bit1 & ~bit2 & ~bit3 & bit4):
return 1
elif(~bit1 & ~bit2 & bit3 & ~bit4):
return 2
elif(~bit1 & ~bit2 & bit3 & bit4):
return 3
elif(~bit1 & bit2 & ~bit3 & ~bit4):
return 4
elif(~bit1 & bit2 & ~bit3 & bit4):
return 5
elif(~bit1 & bit2 & bit3 & ~bit4):
return 6
elif(~bit1 & bit2 & bit3 & bit4):
return 7
elif(bit1 & ~bit2 & ~bit3 & ~bit4):
return 8
elif(bit1 & ~bit2 & ~bit3 & bit4):
return 9
elif(bit1 & ~bit2 & bit3 & ~bit4):
return 10
elif(bit1 & ~bit2 & bit3 & bit4):
return 11
elif(bit1 & bit2 & ~bit3 & ~bit4):
return 12
elif(bit1 & bit2 & ~bit3 & bit4):
return 13
elif(bit1 & bit2 & bit3 & ~bit4):
return 14
elif(bit1 & bit2 & bit3 & bit4):
return 15
else:
return -1
# Maps a given symbol to a complex signal. Optionally, noise and phase offset can be added.
def Qam16SymbolMapper(symbols:int, amplitude_I1, amplitude_Q1, amplitude_I2, amplitude_Q2, noise1=0, noise2=0, noise3=0, noise4=0, phaseOffset1 = 0, phaseOffset2 = 0):
if(symbols == 0):#0000
return sqrt(amplitude_I1**2 + amplitude_Q1**2)*(cos(np.deg2rad(225) + phaseOffset1)+ 1j *sin(np.deg2rad(225) + phaseOffset2)) + (noise1 + 1j*noise2)
elif(symbols == 1):#0001
return sqrt(amplitude_I2**2 + amplitude_Q1**2 )*(cos(np.deg2rad(198) + phaseOffset1)+ 1j *sin(np.deg2rad(198) + phaseOffset2)) + (noise3 + 1j*noise2)
elif(symbols == 2):#0010
return sqrt(amplitude_I1**2 + amplitude_Q2**2)*(cos(np.deg2rad(251) + phaseOffset1)+ 1j *sin(np.deg2rad(251) + phaseOffset2)) + (noise1 + 1j*noise4)
elif(symbols == 3):#0011
return sqrt(amplitude_I2**2 + amplitude_Q2**2)*(cos(np.deg2rad(225) + phaseOffset1)+ 1j *sin(np.deg2rad(225) + phaseOffset2)) + (noise3 + 1j*noise4)
elif(symbols == 4):#0100
return sqrt(amplitude_I1**2 + amplitude_Q1**2)*(cos(np.deg2rad(315) + phaseOffset1)+ 1j *sin(np.deg2rad(315) + phaseOffset2)) + (noise1 + 1j*noise2)
elif(symbols == 5):#0101
return sqrt(amplitude_I1**2 + amplitude_Q2**2)*(cos(np.deg2rad(288) + phaseOffset1)+ 1j *sin(np.deg2rad(288) + phaseOffset2)) + (noise1 + 1j*noise4)
elif(symbols == 6):#0110
return sqrt(amplitude_I2**2 + amplitude_Q1**2)*(cos(np.deg2rad(342) + phaseOffset1)+ 1j *sin(np.deg2rad(342) + phaseOffset2)) + (noise2 + 1j*noise3)
elif(symbols == 7):#0111
return sqrt(amplitude_I2**2 + amplitude_Q2**2)*(cos(np.deg2rad(315) + phaseOffset1)+ 1j *sin(np.deg2rad(315) + phaseOffset2)) + (noise3 + 1j*noise4)
elif(symbols == 8):#1000
return sqrt(amplitude_I1**2 + amplitude_Q1**2)*(cos(np.deg2rad(135) + phaseOffset1)+ 1j *sin(np.deg2rad(135) + phaseOffset2)) + (noise1 + 1j*noise2)
elif(symbols == 9):#1001
return sqrt(amplitude_I1**2 + amplitude_Q2**2)*(cos(np.deg2rad(108) + phaseOffset1)+ 1j *sin(np.deg2rad(108) + phaseOffset2)) + (noise1 + 1j*noise4)
elif(symbols == 10):#1010
return sqrt(amplitude_I2**2 + amplitude_Q1**2)*(cos(np.deg2rad(162) + phaseOffset1)+ 1j *sin(np.deg2rad(162) + phaseOffset2)) + (noise3 + 1j*noise2)
elif(symbols == 11):#1011
return sqrt(amplitude_I2**2 + amplitude_Q2**2)*(cos(np.deg2rad(135) + phaseOffset1)+ 1j *sin(np.deg2rad(135) + phaseOffset2)) + (noise3 + 1j*noise4)
elif(symbols == 12):#1100
return sqrt(amplitude_I1**2 + amplitude_Q1**2)*(cos(np.deg2rad(45) + phaseOffset1)+ 1j *sin(np.deg2rad(45) + phaseOffset2)) + (noise1 + 1j*noise2)
elif(symbols == 13):#1101
return sqrt(amplitude_I2**2 + amplitude_Q1**2)*(cos(np.deg2rad(18) + phaseOffset1)+ 1j *sin(np.deg2rad(15) + phaseOffset2)) + (noise2 + 1j*noise3)
elif(symbols == 14):#1110
return sqrt(amplitude_I1**2 + amplitude_Q2**2)*(cos(np.deg2rad(71) + phaseOffset1)+ 1j *sin(np.deg2rad(75) + phaseOffset2)) + (noise1 + 1j*noise4)
elif(symbols == 15):#1111
return sqrt(amplitude_I2**2 + amplitude_Q2**2)*(cos(np.deg2rad(45) + phaseOffset1)+ 1j *sin(np.deg2rad(45) + phaseOffset2)) + (noise3 + 1j*noise4)
else:
return complex(0)
#-------------------------------------#
#---------- Configuration ------------#
#-------------------------------------#
fs = 44100 # sampling rate
baud = 900 # symbol rate
Nbits = 4000 # number of bits
f0 = 1800 # carrier Frequency
Ns = int(fs/baud) # number of Samples per Symbol
N = Nbits * Ns # Total Number of Samples
t = r_[0.0:N]/fs # time points
f = r_[0:N/2.0]/N*fs # Frequency Points
# Limit for representation of time domain signals for better visibility.
symbolsToShow = 20
timeDomainVisibleLimit = np.minimum(Nbits/baud,symbolsToShow/baud)
#----------------------------------------#
#---------- QAM16 Modulation ------------#
#----------------------------------------#
#Input of the modulator
inputBits = np.random.randn(Nbits,1) > 0
inputSignal = (np.tile(inputBits,(1,Ns))).ravel()
#Only calculate when dividable by 4
if(inputBits.size%4 == 0):
# amplitudes of I_signal and Q_signal (absolut values)
amplitude1_I_signal = 0.25
amplitude2_I_signal = 0.75
amplitude1_Q_signal = 0.25
amplitude2_Q_signal = 0.75
#carrier signals used for modulation. carrier2 has 90° phaseshift compared to carrier1 -> IQ modulation
carrier1 = cos(2*pi*f0*t)
carrier2 = cos(2*pi*f0*t+pi/2)
#Serial-to-Parallel Converter (1/4 of data rate)
I1_bits = inputBits[::4]
I2_bits = inputBits[1::4]
Q1_bits = inputBits[2::4]
Q2_bits = inputBits[3::4]
#Digital-to-Analog Conversion
I_symbols = np.array([[TwoBitToAmplitudeMapper(I1_bits[x], I2_bits[x], amplitude1_I_signal, amplitude2_I_signal)] for x in range(0,I1_bits.size)])
Q_symbols = np.array([[TwoBitToAmplitudeMapper(Q1_bits[x], Q2_bits[x], amplitude1_Q_signal, amplitude2_Q_signal)] for x in range(0,Q1_bits.size)])
I_signal = (np.tile(I_symbols,(1,4*Ns))).ravel()
Q_signal = (np.tile(Q_symbols,(1,4*Ns))).ravel()
#Multiplicator / mixxer
I_signal_modulated = I_signal * carrier1
Q_signal_modulated = Q_signal * carrier2
#Summation befor transmission
QAM16_signal = I_signal_modulated + Q_signal_modulated
#---------- Preperation Constellation Diagram ------------#
dataSymbols = np.array([[GetQam16Symbol(I1_bits[x], I2_bits[x], Q1_bits[x], Q2_bits[x])] for x in range(0,I1_bits.size)])
#Generate noise. Four sources for uncorelated noise for each amplitude.
noiseStandardDeviation = 0.055
noise1 = np.random.normal(0,noiseStandardDeviation,dataSymbols.size)
noise2 = np.random.normal(0,noiseStandardDeviation,dataSymbols.size)
noise3 = np.random.normal(0,noiseStandardDeviation,dataSymbols.size)
noise4 = np.random.normal(0,noiseStandardDeviation,dataSymbols.size)
#Transmitted and received symbols. Rx symbols are generated under the presence of noise
Tx_symbols = np.array([[Qam16SymbolMapper(dataSymbols[x],
amplitude1_I_signal,
amplitude1_Q_signal,
amplitude2_I_signal,
amplitude2_Q_signal,
phaseOffset1 = np.deg2rad(0),
phaseOffset2 = np.deg2rad(0)
)]for x in range(0,dataSymbols.size)])
Rx_symbols = np.array([[Qam16SymbolMapper(dataSymbols[x],
amplitude1_I_signal,
amplitude1_Q_signal,
amplitude2_I_signal,
amplitude2_Q_signal,
noise1 = noise1[x],
noise2 = noise2[x],
noise3 = noise3[x],
noise4 = noise4[x]
)] for x in range(0,dataSymbols.size)])
#-------------------------------------------#
#---------- Data Representation ------------#
#-------------------------------------------#
#---------- Plot of QAM 16 Constellation Diagram ------------#
fig, axis = plt.subplots(2,2,sharey='row')
fig.suptitle('Constellation Diagram QAM16', fontsize=12)
axis[0,0].plot(Tx_symbols.real, Tx_symbols.imag,'.', color='C1')
axis[0,0].set_title('Tx (Source Code/ Block Diagram: "Tx_symbols")')
axis[0,0].set_xlabel('Inphase [V]')
axis[0,0].set_ylabel('Quadrature [V]')
axis[0,0].set_xlim(-1.5,1.5)
axis[0,0].set_ylim(-1.5,1.5)
axis[0,0].set_xticks([-1,-0.5,0,0.5,1])
axis[0,0].set_yticks([-1,-0.5,0,0.5,1])
axis[0,0].grid(True)
axis[0,1].plot(Tx_symbols.real, Tx_symbols.imag,'-',Tx_symbols.real, Tx_symbols.imag,'.')
axis[0,1].set_title('Tx with Trajectory (Source Code/ Block Diagram: "Tx_symbols")')
axis[0,1].set_xlabel('Inphase [V]')
axis[0,1].set_ylabel('Quadrature [V]')
axis[0,1].set_xlim(-1.5,1.5)
axis[0,1].set_ylim(-1.5,1.5)
axis[0,1].set_xticks([-1,-0.5,0,0.5,1])
axis[0,1].set_yticks([-1,-0.5,0,0.5,1])
axis[0,1].grid(True)
axis[1,0].plot(Rx_symbols.real, Rx_symbols.imag,'.', color='C1')
axis[1,0].set_title('Rx (Source Code/ Block Diagram: "Rx_symbols")')
axis[1,0].set_xlabel('Inphase [V]')
axis[1,0].set_ylabel('Quadrature [V]')
axis[1,0].set_xticks([-1,-0.5,0,0.5,1])
axis[1,0].set_yticks([-1,-0.5,0,0.5,1])
axis[1,0].set_xlim(-1.5,1.5)
axis[1,0].set_ylim(-1.5,1.5)
axis[1,0].grid(True)
axis[1,1].plot(Rx_symbols.real, Rx_symbols.imag,'-',Rx_symbols.real, Rx_symbols.imag,'.')
axis[1,1].set_title('Rx with Trajectory (Source Code/ Block Diagram: "Rx_symbols")')
axis[1,1].set_xlabel('Inphase [V]')
axis[1,1].set_ylabel('Quadrature [V]')
axis[1,1].set_xlim(-1.5,1.5)
axis[1,1].set_ylim(-1.5,1.5)
axis[1,1].set_xticks([-1,-0.5,0,0.5,1])
axis[1,1].set_yticks([-1,-0.5,0,0.5,1])
axis[1,1].grid(True)
#---------- Plot of Modulating Signals ------------#
fig, axis = plt.subplots(6,1,sharex='col')
fig.suptitle('QAM16 Modulation', fontsize=12)
axis[0].plot(t, inputSignal, color='C1')
axis[0].set_title('Digital Data Signal (Source Code/ Block Diagram: "inputBits")')
axis[0].set_xlabel('Time [s]')
axis[0].set_ylabel('Amplitude [V]')
axis[0].set_xlim(0,timeDomainVisibleLimit)
axis[0].grid(linestyle='dotted')
axis[1].plot(t, I_signal, color='C2')
axis[1].set_title('Digital I-Signal (Source Code/ Block Diagram: "I_signal")')
axis[1].set_xlabel('Time [s]')
axis[1].set_xlim(0,timeDomainVisibleLimit)
axis[1].set_ylabel('Amplitude [V]')
axis[1].grid(linestyle='dotted')
axis[2].plot(t, I_signal_modulated, color='C2')
axis[2].set_title('Modulated I-Signal (Source Code/ Block Diagram: "I_signal_modulated")')
axis[2].set_xlabel('Time [s]')
axis[2].set_xlim(0,timeDomainVisibleLimit)
axis[2].set_ylabel('Amplitude [V]')
axis[2].grid(linestyle='dotted')
axis[3].plot(t, Q_signal, color='C3')
axis[3].set_title('Digital Q-Signal (Source Code/ Block Diagram: "Q_signal")')
axis[3].set_xlabel('Time [s]')
axis[3].set_xlim(0,timeDomainVisibleLimit)
axis[3].set_ylabel('Amplitude [V]')
axis[3].grid(linestyle='dotted')
axis[4].plot(t, Q_signal_modulated, color='C3')
axis[4].set_title('Modulated Q-Signal (Source Code/ Block Diagram: "Q_signal_modulated")')
axis[4].set_xlabel('Time [s]')
axis[4].set_xlim(0,timeDomainVisibleLimit)
axis[4].set_ylabel('Amplitude [V]')
axis[4].grid(linestyle='dotted')
axis[5].plot(t,QAM16_signal, color='C4')
axis[5].set_title('QAM16 Signal Modulated (Source Code/ Block Diagram: "QAM16_signal")')
axis[5].set_xlabel('Time [s]')
axis[5].set_xlim(0,timeDomainVisibleLimit)
axis[5].set_ylabel('Amplitude [V]')
axis[5].grid(linestyle='dotted')
plt.subplots_adjust(hspace=0.5)
#---------- Plot of Modulated Signal and Spectrum ------------#
fig = plt.figure(constrained_layout=True)
gs = gridspec.GridSpec(3, 1, figure=fig)
fig.suptitle('QAM16 Modulation', fontsize=12)
ax1 = fig.add_subplot(gs[0])
ax1.set_title('Magnitude Spectrum (Source Code/ Block Diagram: "QAM16_signal")');
ax1.magnitude_spectrum(QAM16_signal, Fs=fs, color='C1')
ax1.set_xlim(0,6000)
ax1.grid(linestyle='dotted')
ax2 = fig.add_subplot(gs[1])
ax2.set_title('Log. Magnitude Spectrum (Source Code/ Block Diagram: "QAM16_signal")')
ax2.magnitude_spectrum(QAM16_signal, Fs=fs, scale='dB', color='C1')
ax2.set_xlim(0,6000)
ax2.grid(linestyle='dotted')
ax3 = fig.add_subplot(gs[2])
ax3.set_title('Power Spectrum Density (PSD) (Source Code/ Block Diagram: "QAM16_signal")')
ax3.psd(QAM16_signal,NFFT=len(t),Fs=fs)
ax3.set_xlim(0,6000)
ax3.grid(linestyle='dotted')
plt.subplots_adjust(hspace=0.5)
plt.show()
else:
print("Error! Number of bits has to be a multiple of 4. Number of Bits entered: "+ str(Nbits)+".")