forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_rotator.py
265 lines (205 loc) · 8.16 KB
/
model_rotator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for pretraining (rotator) as described in PTN paper."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
import input_generator
import losses
import metrics
import utils
from nets import deeprotator_factory
slim = tf.contrib.slim
def _get_data_from_provider(inputs, batch_size, split_name):
"""Returns dictionary of batch input data processed by tf.train.batch."""
images, masks = tf.train.batch(
[inputs['image'], inputs['mask']],
batch_size=batch_size,
num_threads=8,
capacity=8 * batch_size,
name='batching_queues/%s' % (split_name))
outputs = dict()
outputs['images'] = images
outputs['masks'] = masks
outputs['num_samples'] = inputs['num_samples']
return outputs
def get_inputs(dataset_dir, dataset_name, split_name, batch_size, image_size,
is_training):
"""Loads the given dataset and split."""
del image_size # Unused
with tf.variable_scope('data_loading_%s/%s' % (dataset_name, split_name)):
common_queue_min = 50
common_queue_capacity = 256
num_readers = 4
inputs = input_generator.get(
dataset_dir,
dataset_name,
split_name,
shuffle=is_training,
num_readers=num_readers,
common_queue_min=common_queue_min,
common_queue_capacity=common_queue_capacity)
return _get_data_from_provider(inputs, batch_size, split_name)
def preprocess(raw_inputs, step_size):
"""Selects the subset of viewpoints to train on."""
shp = raw_inputs['images'].get_shape().as_list()
quantity = shp[0]
num_views = shp[1]
image_size = shp[2]
del image_size # Unused
batch_rot = np.zeros((quantity, 3), dtype=np.float32)
inputs = dict()
for n in xrange(step_size + 1):
inputs['images_%d' % n] = []
inputs['masks_%d' % n] = []
for n in xrange(quantity):
view_in = np.random.randint(0, num_views)
rng_rot = np.random.randint(0, 2)
if step_size == 1:
rng_rot = np.random.randint(0, 3)
delta = 0
if rng_rot == 0:
delta = -1
batch_rot[n, 2] = 1
elif rng_rot == 1:
delta = 1
batch_rot[n, 0] = 1
else:
delta = 0
batch_rot[n, 1] = 1
inputs['images_0'].append(raw_inputs['images'][n, view_in, :, :, :])
inputs['masks_0'].append(raw_inputs['masks'][n, view_in, :, :, :])
view_out = view_in
for k in xrange(1, step_size + 1):
view_out += delta
if view_out >= num_views:
view_out = 0
if view_out < 0:
view_out = num_views - 1
inputs['images_%d' % k].append(raw_inputs['images'][n, view_out, :, :, :])
inputs['masks_%d' % k].append(raw_inputs['masks'][n, view_out, :, :, :])
for n in xrange(step_size + 1):
inputs['images_%d' % n] = tf.stack(inputs['images_%d' % n])
inputs['masks_%d' % n] = tf.stack(inputs['masks_%d' % n])
inputs['actions'] = tf.constant(batch_rot, dtype=tf.float32)
return inputs
def get_init_fn(scopes, params):
"""Initialization assignment operator function used while training."""
if not params.init_model:
return None
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
params.init_model, var_list)
def init_assign_function(sess):
sess.run(init_assign_op, init_feed_dict)
return init_assign_function
def get_model_fn(params, is_training, reuse=False):
return deeprotator_factory.get(params, is_training, reuse)
def get_regularization_loss(scopes, params):
return losses.regularization_loss(scopes, params)
def get_loss(inputs, outputs, params):
"""Computes the rotator loss."""
g_loss = tf.zeros(dtype=tf.float32, shape=[])
if hasattr(params, 'image_weight'):
g_loss += losses.add_rotator_image_loss(inputs, outputs, params.step_size,
params.image_weight)
if hasattr(params, 'mask_weight'):
g_loss += losses.add_rotator_mask_loss(inputs, outputs, params.step_size,
params.mask_weight)
slim.summaries.add_scalar_summary(
g_loss, 'rotator_loss', prefix='losses')
return g_loss
def get_train_op_for_scope(loss, optimizer, scopes, params):
"""Train operation function for the given scope used file training."""
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
update_ops = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
update_ops.extend(tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
return slim.learning.create_train_op(
loss,
optimizer,
update_ops=update_ops,
variables_to_train=var_list,
clip_gradient_norm=params.clip_gradient_norm)
def get_metrics(inputs, outputs, params):
"""Aggregate the metrics for rotator model.
Args:
inputs: Input dictionary of the rotator model.
outputs: Output dictionary returned by the rotator model.
params: Hyperparameters of the rotator model.
Returns:
names_to_values: metrics->values (dict).
names_to_updates: metrics->ops (dict).
"""
names_to_values = dict()
names_to_updates = dict()
tmp_values, tmp_updates = metrics.add_image_pred_metrics(
inputs, outputs, params.num_views, 3*params.image_size**2)
names_to_values.update(tmp_values)
names_to_updates.update(tmp_updates)
tmp_values, tmp_updates = metrics.add_mask_pred_metrics(
inputs, outputs, params.num_views, params.image_size**2)
names_to_values.update(tmp_values)
names_to_updates.update(tmp_updates)
for name, value in names_to_values.iteritems():
slim.summaries.add_scalar_summary(
value, name, prefix='eval', print_summary=True)
return names_to_values, names_to_updates
def write_disk_grid(global_step, summary_freq, log_dir, input_images,
output_images, pred_images, pred_masks):
"""Function called by TF to save the prediction periodically."""
def write_grid(grid, global_step):
"""Native python function to call for writing images to files."""
if global_step % summary_freq == 0:
img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
utils.save_image(grid, img_path)
return 0
grid = _build_image_grid(input_images, output_images, pred_images, pred_masks)
slim.summaries.add_image_summary(
tf.expand_dims(grid, axis=0), name='grid_vis')
save_op = tf.py_func(write_grid, [grid, global_step], [tf.int64],
'write_grid')[0]
return save_op
def _build_image_grid(input_images, output_images, pred_images, pred_masks):
"""Builds a grid image by concatenating the input images."""
quantity = input_images.get_shape().as_list()[0]
for row in xrange(int(quantity / 4)):
for col in xrange(4):
index = row * 4 + col
input_img_ = input_images[index, :, :, :]
output_img_ = output_images[index, :, :, :]
pred_img_ = pred_images[index, :, :, :]
pred_mask_ = tf.tile(pred_masks[index, :, :, :], [1, 1, 3])
if col == 0:
tmp_ = tf.concat([input_img_, output_img_, pred_img_, pred_mask_],
1) ## to the right
else:
tmp_ = tf.concat([tmp_, input_img_, output_img_, pred_img_, pred_mask_],
1)
if row == 0:
out_grid = tmp_
else:
out_grid = tf.concat([out_grid, tmp_], 0)
return out_grid