-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuronModel.py
204 lines (177 loc) · 9.52 KB
/
NeuronModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#! python3
import numpy as np
import itertools as it
class NeuronModel():
def __init__(self, N=10, t0=0, tend=100, dt=0.1, connectionscale=50, synapselimit=1000, synapsestrengthlimit=50, **params):
self._dt = dt
self._tstart = t0
self._tend = tend
self._t = t0
self._Time = np.arange(self._tstart,self._tend,self._dt)
self._X = np.array([])
self._dX = np.array([])
self._NumberOfNeurons = N
self._NoiseMean = 0
self._NoiseSTD = 0.03
self._ConnectionScale = connectionscale
self._SynapseCount = np.zeros(self._NumberOfNeurons)
self._SynapseLimit = synapselimit
self._SynapseStrengthLimit = synapsestrengthlimit
self._CellType = np.random.choice([-1,1],size=N,p=[1/5,4/5])
self._NeuronPosition = []
self._Distance = {}
self._SynapseProbability = {}
self._SynapseWeight = {key: 0 for key in it.product(range(self._NumberOfNeurons),repeat=2)}
self._SynapseQ = {key: False for key in it.product(range(self._NumberOfNeurons),repeat=2)}
self._Params = params
self.PlaceNeurons()
self.Initialize()
self.ComputeDistances() #This will result in self_DelayIndx and self._Distance
# self.DevelopNetwork() #This will result in self._EdgeWieghts = {(n1,n2):w,...}
def SetStorage(self,s):
self._Storage = s
def PlaceNeurons(self):
for n in range(self._NumberOfNeurons):
x = 80*np.random.random() #range between 0, 80
y = 80*np.random.random() #range between 0, 80
if x<=10 and y<=10:
x = x + (50*np.random.random()+10) #range between 10, 60
y = y + (50*np.random.random()+10) #range between 10, 60
elif x>=70 and y<=10:
x = x - (50*np.random.random()+10) #range between 10, 60
y = y + (50*np.random.random()+10) #range between 10, 60
elif x<=10 and y>=70:
x = x + (50*np.random.random()+10) #range between 10, 60
y = y - (50*np.random.random()+10) #range between 10, 60
elif x>=70 and y>=70:
x = x - (50*np.random.random()+10) #range between 10, 60
y = y - (50*np.random.random()+10) #range between 10, 60
else:
x = x
y = y
self._NeuronPosition.append(np.array([x,y]))
#self._Cell = (int(np.floor(self._x/10)),int(np.floor(self._y/10)))
def ComputeDistances(self):
for ii in range(self._NumberOfNeurons):
for jj in range(ii,self._NumberOfNeurons):
if ii == jj:
d = 0
self._Distance[(ii,jj)] = 0
self._SynapseProbability[(ii,jj)] = 0
else:
d = np.sqrt(self.Distance2(self._NeuronPosition[ii], self._NeuronPosition[jj]))
self._Distance[(ii,jj)] = d
self._Distance[(jj,ii)] = d
self._SynapseProbability[(ii,jj)] = np.exp(-d/self._ConnectionScale)
self._SynapseProbability[(jj,ii)] = np.exp(-d/self._ConnectionScale)
for i in range(self._NumberOfNeurons):
self._DelayIndx = np.array([int(2*self._Distance[(i,n)]/self._dt) for n in range(self._NumberOfNeurons)])
def Distance2(self, a, b):
return sum((a - b)**2)
def DevelopNetwork(self,n,source='Jupyter'):
x = 0;
if source=='Jupyter':
for t in range(n):
for key in self._SynapseWeight.keys():
if self._SynapseCount[key[0]] < self._SynapseLimit and self._SynapseCount[key[1]] < self._SynapseLimit:
if np.random.random()<self._SynapseProbability[key]:
self._SynapseQ[key] = True
self._SynapseCount[key[0]]+=1
self._SynapseCount[key[1]]+=1
if self._SynapseQ[key] and self._SynapseWeight[key] < self._SynapseStrengthLimit:
self._SynapseWeight[key]+=1
else:
for t in range(n): #trange(n):
for key in self._SynapseWeight.keys():
if np.random.random()<self._SynapseProbability[key]:
if self._SynapseWeight[key] < self._SynapseStrengthLimit:
self._SynapseWeight[key]+=1 #self._SynapseLimit/n
if self._SynapseCount[key[0]] < self._SynapseLimit and self._SynapseCount[key[1]] < self._SynapseLimit:
self._SynapseCount[key[0]]+=1
self._SynapseCount[key[1]]+=1
def Initialize(self):
self._X = np.concatenate((np.random.normal(-40,1,size=self._NumberOfNeurons), np.zeros(self._NumberOfNeurons)))
self._dX = np.zeros_like(self._X)
self._Time = np.arange(self._tstart,self._tend,self._dt)
self._dim = len(self._X)
self._VV = np.zeros((len(self._Time),self._NumberOfNeurons))
self._dVV = np.zeros((len(self._Time),self._NumberOfNeurons))
self._NN = np.zeros_like(self._VV)
self._dNN = np.zeros_like(self._dVV)
self.SetParameters()
self._DelayIndx = np.zeros(self._NumberOfNeurons,dtype=np.int8)
self._Input = np.zeros(self._NumberOfNeurons)
def SetParameters(self):
params = self._Params
self._I = np.random.normal(params["I" ],params["I_v" ],size=self._NumberOfNeurons)
self._C = np.random.normal(params["C" ],params["C_v" ],size=self._NumberOfNeurons)
self._gCa = np.random.normal(params["gCa"],params["gCa_v"],size=self._NumberOfNeurons)
self._VCa = np.random.normal(params["VCa"],params["VCa_v"],size=self._NumberOfNeurons)
self._gK = np.random.normal(params["gK" ],params["gK_v" ],size=self._NumberOfNeurons)
self._VK = np.random.normal(params["VK" ],params["VK_v" ],size=self._NumberOfNeurons)
self._gL = np.random.normal(params["gL" ],params["gL_v" ],size=self._NumberOfNeurons)
self._VL = np.random.normal(params["VL" ],params["VL_v" ],size=self._NumberOfNeurons)
self._phi = np.random.normal(params["phi"],params["phi_v"],size=self._NumberOfNeurons)
self._V1 = np.random.normal(params["V1" ],params["V1_v" ],size=self._NumberOfNeurons)
self._V2 = np.random.normal(params["V2" ],params["V2_v" ],size=self._NumberOfNeurons)
self._V3 = np.random.normal(params["V3" ],params["V3_v" ],size=self._NumberOfNeurons)
self._V4 = np.random.normal(params["V4" ],params["V4_v" ],size=self._NumberOfNeurons)
def updateSynapses(self,indx):
EffectiveIndx = indx + self._DelayIndx;
self._Input = np.zeros(self._NumberOfNeurons)
for i in range(self._NumberOfNeurons):
input = self._VV[EffectiveIndx,np.arange(self._NumberOfNeurons)]
weights = np.array([self._SynapseWeight[(n,i)] for n in range(self._NumberOfNeurons)])
self._Input[i] = sum(1/self._SynapseLimit*weights*self._CellType*1/(1+np.exp(-input)))
self._Input[EffectiveIndx<0] = 0
def MLFlow(self, t, x):
V = self._X[:self._NumberOfNeurons]
N = self._X[self._NumberOfNeurons:]
Mss = 0.5*(1+np.tanh((V-self._V1)/self._V2))
Nss = 0.5*(1+np.tanh((V-self._V3)/self._V4))
Tau = 1/(self._phi*np.cosh((V-self._V3)/self._V4/2))
dV = (self._I - self._gL*(V-self._VL) - self._gCa*Mss*(V-self._VCa) - self._gK*N*(V-self._VK))/self._C + self._Input
dN = (Nss - N)/Tau
return np.concatenate((dV, dN))
def UpdateRK(self,ii):
#self._XX[ii,:] = self._X;
#self._dXX[ii,:] = self._dX;
k1 = self.MLFlow(self._t, self._X)
k2 = self.MLFlow(self._t+self._dt/2, self._X+k1*self._dt/2)
k3 = self.MLFlow(self._t+self._dt/2, self._X+k2*self._dt/2)
k4 = self.MLFlow(self._t+self._dt , self._X+k2*self._dt )
self._X = self._X + (k1 + 2*k2 + 2*k3 + k4)*self._dt/6
self._t = self._t + self._dt
def UpdateEuler(self,ii):
#self._XX[ii,:] = self._X;
#self._dXX[ii,:] = self._dX;
self._dX = self.Flow(self._t, self._X, self._params);
self._X = self._X + self._dt*self._dX;
self._t = self._t + self._dt
def StoreTimeSeriesData(self, i):
self._VV[i,:] = self._X[:self._NumberOfNeurons]
self._NN[i,:] = self._X[self._NumberOfNeurons:]
self._dVV[i,:] = self._dX[:self._NumberOfNeurons]
self._dNN[i,:] = self._dX[self._NumberOfNeurons:]
def AddNoise(self,indx):
self._X[self._NumberOfNeurons:] += np.random.normal(self._NoiseMean, self._NoiseSTD, self._NumberOfNeurons)
def Simulate(self, source='Jupyter'):
self._dX = np.array(self.MLFlow(self._t, self._X))
self.Initialize()
if source=='Jupyter':
for ii in range(len(self._Time)):
self.WriteData()
self.StoreTimeSeriesData(ii)
self.updateSynapses(ii)
self.AddNoise(ii)
self.UpdateRK(ii);
else:
for ii in range(len(self._Time)):
print(self._t)
self.WriteData()
self.StoreTimeSeriesData(ii)
self.updateSynapses(ii)
self.AddNoise(ii)
self.UpdateRK(ii);
def WriteData(self):
self._Storage.WriteLine()