-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
632 lines (558 loc) · 29.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import argparse
from distutils.util import strtobool
import logging
import os
import random
import shutil
import sys
import warnings
from logging import Logger
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from data_provider.data_factory import data_provider
from models import (
Informer,
Autoformer,
FEDformer,
VFEDformer,
MDFEDformer,
DLinear,
Linear,
Conv,
ConvSkip,
VConv,
DConv,
VAEDConv,
VAELinear,
PatchTST,
PatchTST_resemble,
Transformer,
TransformerSAT,
TransformerNAT,
iTransformer,
TransformerEO,
TransformerDO,
TransformerEOBERT,
TransformerDA,
TransformerDAEO,
)
from utils.metrics import metric
from utils.misc import load_config, move_to_device, set_seed
from utils.optimizer import build_optimizer, build_scheduler
from utils.tools import EarlyStopping
warnings.filterwarnings('ignore')
class Trainer:
def __init__(self, args, cfg):
self.args = args
self.cfg = cfg
# build model and set up logging dir
self.model = self._build_model()
args.model_dir = os.path.join(args.exp_out, args.dir_prefix + self.model.get_loginfo())
self.model_dir = args.model_dir
self.logger = self._make_logger(
args.model_dir,
overwrite=args.train,
log_file="train.log" if args.train else "prediction.log"
)
self.tb_writer = SummaryWriter(log_dir=os.path.join(args.model_dir, "tensorboard")) if args.train else None
# training params
train_cfg = cfg['training']
self.use_cuda = train_cfg['use_cuda']
self.device = self._acquire_device()
self.model = self.model.to(self.device)
self._log_paramemters(self.model)
# optimizer and learning rate scheduler
self.epochs = train_cfg['epochs']
self.criterion = self._select_criterion()
# TODO: learning rate scheduler for epochs.
self.optimizer = build_optimizer(
config=train_cfg['optimization'],
parameters=self.model.parameters()
)
self.scheduler, self.scheduler_freq = build_scheduler(
config=train_cfg['optimization'],
scheduler_mode="min",
optimizer=self.optimizer
)
def _acquire_device(self):
if self.use_cuda:
os.environ["CUDA_VISIBLE_DEVICES"] = str(
self.args.gpu
) if not self.args.use_multi_gpu else self.args.devices
device = torch.device('cuda:{}'.format(self.args.gpu))
self.logger.info('Use GPU: cuda:{}'.format(self.args.gpu))
else:
device = torch.device('cpu')
self.logger.info('Use CPU')
return device
def _log_paramemters(self, model):
total_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
self.logger.info("Total parameters = {}".format(total_params))
self.logger.info("Total trainable parameters = {}".format(total_params_trainable))
def _build_model(self):
model_dict = {
'FEDformer': FEDformer,
'MDFEDformer': MDFEDformer,
'VFEDformer': VFEDformer,
'Autoformer': Autoformer,
'Informer': Informer,
'Transformer': Transformer,
'TransformerSAT': TransformerSAT,
'TransformerNAT': TransformerNAT,
'TransformerDA': TransformerDA,
'TransformerEO': TransformerEO,
'TransformerDO': TransformerDO,
'TransformerEOBERT': TransformerEOBERT,
'TransformerDAEO': TransformerDAEO,
'iTransformer': iTransformer,
'PatchTST': PatchTST,
'PatchTST_resemble': PatchTST_resemble,
'DLinear': DLinear,
'Linear': Linear,
'Conv': Conv,
'ConvSkip': ConvSkip,
'VConv': VConv,
'DConv': DConv,
'VAEDConv': VAEDConv,
'VAELinear': VAELinear,
}
model = model_dict[self.args.model].Model(self.args).float() # float?
if self.args.use_multi_gpu and self.args.use_gpu:
model = nn.DataParallel(model, device_ids=self.args.device_ids)
return model
def _make_logger(self, model_dir: str, overwrite: bool = True, log_file: str = "train.log", ) -> Logger:
"""
Create a logger for logging the training process.
:param overwrite: flag to create the dir.
:param model_dir: path to logging directory
:param log_file: path to logging file
:return: logger object
"""
# global logger
if os.path.isdir(model_dir):
# if not overwrite:
# raise FileExistsError("Model directory exists and overwriting is disabled.")
if overwrite:
# delete previous directory to start with empty dir again
shutil.rmtree(model_dir)
os.makedirs(model_dir, exist_ok=True)
logger = logging.getLogger(__name__)
if not logger.handlers:
logger.setLevel(level=logging.DEBUG)
fh = logging.FileHandler("{}/{}".format(model_dir, log_file))
fh.setLevel(level=logging.DEBUG)
logger.addHandler(fh)
formatter = logging.Formatter("%(asctime)s %(message)s")
fh.setFormatter(formatter)
if sys.platform == "linux":
sh = logging.StreamHandler()
sh.setLevel(logging.INFO)
sh.setFormatter(formatter)
logging.getLogger("").addHandler(sh)
logger.info("Logger prepared: {}/{}!".format(model_dir, log_file))
return logger
def _get_data(self, split):
data_set, data_loader = data_provider(self.args, split)
return data_set, data_loader
# def _select_optimizer(self):
# model_optim = torch.optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
# return model_optim
def _select_criterion(self):
criterion = nn.MSELoss()
return criterion
def _mse_loss(self, pred, y):
return F.mse_loss(pred, y)
def run_batch(self, batch, step) -> dict:
# batch_x, batch_y, batch_x_mark, batch_y_mark = (
# batch.prev_x, batch.target_y, batch.prev_mark, batch.target_mark
# )
batch = move_to_device(batch, self.device, torch.float32)
f_dim = -1 if self.args.features == 'MS' else 0
target = batch['target_y'][:, -self.args.pred_len:, f_dim:]
# encoder - decoder
self.optimizer.zero_grad()
model_output_dict = self.model.forward(**batch)
total_loss = self._mse_loss(model_output_dict['output'][..., f_dim:], target)
mse_loss = total_loss.detach().clone() # for logging
for k in model_output_dict:
if "_loss" in k:
total_loss += model_output_dict[k]
model_output_dict['mse_loss'] = mse_loss
model_output_dict['total_loss'] = total_loss
return model_output_dict
def train(self):
train_data, train_loader = data_provider(self.args, split='train')
valid_data, vali_loader = data_provider(self.args, split='train', real_time=True)
test_data, test_loader = data_provider(self.args, split='test', real_time=True)
self.logger.info(
"Train samples: %d, Dev samples: %d, Test samples: %d",
len(train_data), len(valid_data), len(test_data)
)
self.logger.info("checkpoint save directory: %s", self.model_dir)
early_stopping = EarlyStopping(patience=self.args.early_stop_patience, verbose=False, logger=self.logger)
scaler = torch.cuda.amp.GradScaler() if self.args.amp else None
# for debug
# dev_loss = self.evaluate(valid_data, vali_loader)
global_step = 0
for epoch in range(self.epochs):
epoch_train_loss = []
self.model.train()
for i, batch in enumerate(train_loader):
global_step += 1
self.optimizer.zero_grad()
if self.args.amp:
with torch.cuda.amp.autocast():
model_output_dict = self.run_batch(batch, global_step)
loss = model_output_dict['total_loss']
scaler.scale(loss).backward()
scaler.step(self.optimizer)
scaler.update()
else:
model_output_dict = self.run_batch(batch, global_step)
loss = model_output_dict['total_loss']
loss.backward()
self.optimizer.step()
epoch_train_loss.append(loss.item())
for k, v in model_output_dict.items():
if '_loss' in k:
self.tb_writer.add_scalar('train/' + k, v, global_step)
self.tb_writer.add_scalar('train/optim_lr', self.optimizer.param_groups[0]['lr'], global_step)
if self.scheduler_freq == "step":
self.scheduler.step(metrics=loss)
# adjust_learning_rate(self.optimizer, epoch + 1, self.args)
if len(train_loader) // 3 == 0 or global_step % (len(train_loader) // 3) == 0:
info = "[Training] at Epoch: {:02d}, Step: {:05d} | Train Batch Loss: {:2.4f}".format(
epoch + 1, global_step, loss.item(),
)
# self.logger.info(
# "[Training] at Epoch: %02d, Step: %05d | Train Batch Loss: %2.6f",
# epoch + 1, global_step, loss.item(),
# )
# info = ""
for k, v in model_output_dict.items():
if '_loss' in k and "total_loss" not in k:
info += ', {}: {:2.4f}'.format(k.replace("_", " ").title(), v.item())
self.logger.info(info)
# <======================== Epoch End ========================>
train_loss_avg = np.average(epoch_train_loss)
dev_loss = self.evaluate(valid_data, vali_loader)
test_loss = self.evaluate(test_data, test_loader)
self.logger.info(
"[Evaluate] at Epoch: %02d, Step: %05d | "
"Averaged Running Train Loss: %2.6f, "
"Validation Loss: %2.6f, "
"Test Loss: %2.6f",
epoch + 1, global_step, train_loss_avg, dev_loss.item(), test_loss.item()
)
self.test(valid_data, vali_loader, during_train=True)
self.test(test_data, test_loader, during_train=True)
# self.logger.info("*" * 40)
self.tb_writer.add_scalar('Evaluate/Train_Loss_Avg', train_loss_avg, epoch)
self.tb_writer.add_scalar('Evaluate/Dev_Loss', dev_loss, epoch)
self.tb_writer.add_scalar('Evaluate/Test_Loss', test_loss, epoch)
early_stopping(dev_loss, self.model, self.model_dir)
if early_stopping.early_stop:
self.logger.info("Early stopping")
break
# update learning rate at each epoch.
if self.scheduler_freq == "epoch":
self.scheduler.step(metrics=dev_loss)
self.logger.info('Testing: {}'.format(self.model_dir))
self.test(valid_data, vali_loader)
self.test(test_data, test_loader)
def evaluate(self, valid_data, vali_loader):
step_loss = []
self.model.eval()
with torch.no_grad():
for i, batch in enumerate(vali_loader):
self.optimizer.zero_grad()
if self.args.amp:
with torch.cuda.amp.autocast():
model_output_dict = self.run_batch(batch, i)
else:
model_output_dict = self.run_batch(batch, i)
loss = model_output_dict['mse_loss']
step_loss.append(loss.item())
avg_loss = np.average(step_loss)
self.model.train()
return avg_loss
# def _save_checkpoint(self, val_loss, model, path):
# if self.verbose:
# # print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
# self.logger.info(
# f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...'
# )
# torch.save(model.state_dict(), path + '/' + 'checkpoint.pth')
# self.val_loss_min = val_loss
def test(self, test_data=None, test_loader=None, during_train=False):
if test_data is None or test_loader is None:
test_data, test_loader = data_provider(self.args, split='test', real_time=True)
if not during_train:
# self.logger.info("Loading Model for Test..")
self.model.load_state_dict(torch.load(os.path.join(self.model_dir, 'checkpoint.pth')))
preds, trues = [], []
# result save
folder_path = os.path.join(self.model_dir, "test")
if not os.path.exists(folder_path):
os.makedirs(folder_path)
self.model.eval()
with torch.no_grad():
for i, batch in enumerate(test_loader):
batch = move_to_device(batch, self.device, torch.float32)
f_dim = -1 if self.args.features == 'MS' else 0
target = batch['target_y'][:, -self.args.pred_len:, f_dim:]
# encoder - decoder
if self.args.amp:
with torch.cuda.amp.autocast():
# output_dict = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
model_output_dict = self.model(**batch)
else:
# output_dict = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
model_output_dict = self.model(**batch)
if "outputs" in model_output_dict.keys():
pred = model_output_dict['outputs'].mean(0)[..., f_dim:].detach().cpu().numpy()
else:
pred = model_output_dict['output'][..., f_dim:].detach().cpu().numpy()
true = target.detach().cpu().numpy()
preds.append(pred)
trues.append(true)
preds, trues = np.concatenate(preds, axis=0), np.concatenate(trues, axis=0)
if test_data.real_time:
preds, trues = preds.reshape(-1, preds.shape[-1]), trues.reshape(-1, trues.shape[-1])
overlapped_size = preds.shape[0] - test_data.whole_pred_len()
ind1 = list(range(self.args.pred_len * (len(test_data) - 1)))
ind2 = list(range(preds.shape[0]))[overlapped_size - self.args.pred_len:]
ind = ind1 + ind2
preds, trues = preds[ind, :], trues[ind, :]
if test_data.scale:
denormalized_preds = test_data.inverse_transform(preds)
denormalized_trues = test_data.inverse_transform(trues)
mae, mse, rmse, mape, mspe, da = metric(denormalized_preds, denormalized_trues)
self.logger.info(
'[{} set] Samples:{:05d},'
' MSE:{:.4f}, MAE:{:.4f}, RMSE:{:.4f}, MSPE:{:.4f}, DA:{:.4f}, MAPE:{:.4f}'.format(
test_data.set_type.title(), len(test_data),
mse, mae, rmse, mspe, da, mape
)
)
if not during_train:
results_file = "{} MSE_{:.4f} MAE_{:.4f}, RMSE:{:.4f} MSPE_{:.4f} DA_{:.4f} MAPE_{:.4f}".format(
test_data.set_type.title(), mse, mae, rmse, mspe, da, mape
)
with open(os.path.join(self.model_dir, results_file), "w") as f:
f.write("")
np.save(
folder_path + '/{} metrics.npy'.format(test_data.set_type.title()),
np.array([mae, mse, rmse, mape, mspe, da])
)
np.save(
folder_path + '/{} pred.npy'.format(test_data.set_type.title()),
denormalized_preds
)
np.save(
folder_path + '/{} true.npy'.format(test_data.set_type.title()),
denormalized_trues
)
# mae, mse, rmse, mape, mspe, da = metric(preds, trues)
# self.logger.info(
# '[Normalized_Metrics {}]: MSE:{:.4f}, MAE:{:.4f}, RMSE:{:.4f}, MAPE:{:.4f}, DA:{:.4f}'.format(
# test_data.set_type.title(), mse, mae, rmse, mape, da
# )
# )
# results_file = "{} MSE_{:.4f} MAE_{:.4f} MAPE_{:.4f} MSPE_{:.4f} DA_{:.4f} Normalized".format(
# test_data.set_type.title(), mse, mae, mape, mspe, da
# )
# with open(os.path.join(self.model_dir, results_file), "w") as f:
# f.write("")
# np.save(
# folder_path + '/{} Normalized_metrics.npy'.format(test_data.set_type.title()),
# np.array([mae, mse, rmse, mape, mspe])
# )
# np.save(folder_path + '/Normalized_pred.npy', preds)
# np.save(folder_path + '/Normalized_true.npy', trues)
def predict(self, load=False):
# TODO, unnormlization.
pred_data, pred_loader = self._get_data(split='pred')
self.logger.info("[Predict] Test samples: %d", len(pred_data))
if load:
best_model_path = os.path.join(self.model_dir, 'checkpoint.pth')
self.model.load_state_dict(torch.load(best_model_path))
preds = []
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(pred_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float()
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
f_dim = -1 if self.args.features == 'MS' else 0
target = batch_y[:, -self.args.pred_len:, f_dim:]
# encoder - decoder
if self.args.amp:
with torch.cuda.amp.autocast():
if self.args.output_attention:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
else:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
else:
if self.args.output_attention:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
else:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
pred = outputs.detach().cpu().numpy() # .squeeze()
preds.append(pred)
preds = np.array(preds)
preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1])
# result save
folder_path = os.path.join(self.args.model_dir, "predict")
if not os.path.exists(folder_path):
os.makedirs
np.save(folder_path + 'real_prediction.npy', preds)
return
def main_parser():
parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
# basic config
parser.add_argument('--train', action='store_true', help='train or predict only')
parser.add_argument('--config', type=str, default='configs/default.yaml', help='config file')
parser.add_argument('--model', type=str, default='FEDformer',
help='model name, options: [FEDformer, Autoformer, Informer, Transformer]')
parser.add_argument('--seed', type=int, default=42)
# supplementary config for FEDformer model
parser.add_argument('--version', type=str, default='Fourier',
help='for FEDformer, there are two versions to choose, options: [Fourier, Wavelets]')
parser.add_argument('--mode_select', type=str, default='random',
help='for FEDformer, there are two mode selection method, options: [random, low]')
parser.add_argument('--modes', type=int, default=64, help='modes to be selected random 64')
parser.add_argument('--L', type=int, default=3, help='ignore level')
parser.add_argument('--base', type=str, default='legendre', help='mwt base')
parser.add_argument('--cross_activation', type=str, default='tanh',
help='mwt cross atention activation function tanh or softmax')
# data loader
parser.add_argument('--data', type=str, default='ETTh1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./dataset/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, '
'S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--scaler', type=str, default='std', help='data scaler type')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, '
'b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
# parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--exp_out', type=str, default='./exp_out/', help='directory of experiment output')
parser.add_argument('--zone', type=str, default='CT', help='zone of Gefcom',
choices=['CT', 'MASS', 'ME', 'NEMASSBOST', 'NH', 'RI', 'SEMASS', 'TOTAL', 'VT', 'WCMASS'] # for 2017
+
[str(i+1) for i in range(21)] # for 2012
)
parser.add_argument('--cols', type=str, default=None, help='temperature of zone',
choices=["drybulb_{}".format(i+1) for i in range(11) ] # for 2012
)
parser.add_argument('--all_zone', action='store_true', help='whether all zone')
parser.add_argument('--attack_rate', type=float, default=0.0)
parser.add_argument('--attack_form', type=str, default="uniform")
parser.add_argument("--attack_increase", type=lambda x: bool(strtobool(str(x))), default=True)
parser.add_argument('--dist_param_a', type=float, default=1.0)
parser.add_argument('--dist_param_b', type=float, default=0.0)
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=0, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
# parser.add_argument('--cross_activation', type=str, default='tanh'
# model define
parser.add_argument('--lag', type=int, default=0, help='lag')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--moving_avg', type=int, default=24, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false', default=True,
help='whether to use distilling in encoder, using this argument means not using distilling')
parser.add_argument('--individual', action='store_true', help='train or predict only')
parser.add_argument('--revin', action='store_true', help='revin or not')
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--fc_dropout', type=float, default=0.05, help='fc_dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--embed_shared', action='store_true', help='whether share the input embedding')
parser.add_argument('--encoder_regular', type=float, default=0.0)
parser.add_argument('--conv_head', action='store_true', help='whether use convolution as prediction head')
parser.add_argument('--residual', action='store_true', help='whether use convolution as prediction head')
parser.add_argument('--skip', type=int, default=1, help='skip connection')
parser.add_argument('--attention_window', type=int, default=10, help='window size of attention')
parser.add_argument('--kernel', type=int, default=3, help='kernel size of Conv1D')
parser.add_argument('--activation', type=str, default='tanh', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--conv_gaussian', action='store_true')
parser.add_argument('--beta', type=float, default=0.0001, help='weight of gaussian loss')
parser.add_argument('--norm_pos', type=str, default=None, help='normalization position of variation')
parser.add_argument('--norm', type=str, default=None, help='normalization')
parser.add_argument('--latent_norm', type=str, default=None, help='normalization')
parser.add_argument('--combine_type', type=str, default="latent_only", help='ways to utilize latent z')
parser.add_argument('--sample_size', type=int, default=1, help="num of samples from distribution")
parser.add_argument('--valid_temperature', type=float, default=0.0, help="weight of gaussian noise")
parser.add_argument('--subtract_last', action='store_true', help='self supervised learning')
parser.add_argument('--ssl', action='store_true', help='self supervised learning')
parser.add_argument('--load_ckpt', action='store_true', help='whether load ckpt from pretrained VAE model.')
parser.add_argument('--pretrained_model', type=str, help='pretrained model dir of ssl')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=3, help='experiments times')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--early_stop_patience', type=int, default=3, help='early stopping early_stop_patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
# parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1', help='device ids of multi gpus')
parser.add_argument('--latent-dim', type=int, default=8, help='latent dimension of gaussian variables')
parser.add_argument('--sub_space', action='store_true', help='whether to sub_disagreement')
parser.add_argument('--sub_space_residual', action='store_true', help='whether to sub_disagreement')
parser.add_argument('--out_space', action='store_true', help='whether to out_disagreement')
parser.add_argument('--out_space_residual', action='store_true', help='whether to out_disagreement')
parser.add_argument('--diversity_weight', type=float, default=1.0, help='weight of disagreement loss')
parser.add_argument('--diversity_metric', type=str, default='bcv', help='diversity metric')
parser.add_argument('--pretrained-path', type=str, default=None)
args = parser.parse_args()
cfg = load_config(args.config)
return args, cfg
def main():
args, cfg = main_parser()
set_seed(args.seed)
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
# print('Args in experiment:')
# for k, v in vars(args).items():conv_head
# print("{}:{}".format(k, v))
dir_prefix = f'{args.data}_{args.model}'
args.dir_prefix = dir_prefix
exp: Trainer = Trainer(args, cfg=cfg) # set experiments
if args.train:
exp.logger.info('Training: {}'.format(args.model_dir))
exp.train()
else:
exp.logger.info('Testing: {}'.format(args.model_dir))
exp.test()
if __name__ == "__main__":
main()