-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining.py
367 lines (337 loc) · 13.6 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import argparse
import os
import time
import queue
import sys
import warnings
sys.path.append(os.getcwd())
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from modelling.model import build_model
from utils.optimizer import build_optimizer, build_scheduler
from utils.progressbar import ProgressBar
warnings.filterwarnings("ignore")
from utils.misc import (
load_config,
make_model_dir,
make_logger, make_writer, make_wandb,
set_seed,
is_main_process, init_DDP,
synchronize
)
from dataset.Dataloader import build_dataloader
from prediction import evaluation
import wandb
import errno
def save_model(model, optimizer, scheduler, output_file, epoch=None, global_step=None, current_score=None):
base_dir = os.path.dirname(output_file)
os.makedirs(base_dir, exist_ok=True)
state = {
'epoch': epoch,
'global_step': global_step,
'model_state': model.state_dict(),
# 'optimizer_state': optimizer.state_dict(),
# 'scheduler_state': scheduler.state_dict(),
'best_score': best_score,
'current_score': current_score,
}
start_time = time.time()
logger.info("Saving model state as " + output_file)
torch.save(state, output_file)
logger.info("Save model takes {:.2f} seconds.".format(time.time() - start_time))
return output_file
def evaluate_and_save(
model,
optimizer,
scheduler,
val_dataloader,
cfg,
tb_writer,
wandb_run=None,
epoch=None,
global_step=None,
generate_cfg={},
do_recognition=True,
do_translation=True,
):
tag = 'epoch_{:02d}'.format(epoch) if epoch is not None else 'step_{}'.format(global_step)
# save
global best_score, ckpt_queue
eval_results = evaluation(
model=model,
val_dataloader=val_dataloader,
cfg=cfg,
tb_writer=tb_writer,
wandb_run=wandb_run,
epoch=epoch,
global_step=global_step,
generate_cfg=generate_cfg,
save_dir=os.path.join(cfg['training']['model_dir'], 'validation', tag),
do_recognition=do_recognition,
do_translation=do_translation,
)
metric = 'bleu4' if '2T' in cfg['task'] else 'wer'
sort_key = lambda x: x
if metric == 'bleu4':
score = eval_results['bleu']['bleu4']
best_score = max(best_score, score)
elif metric == 'wer':
score = eval_results['wer']
best_score = min(best_score, score)
sort_key = lambda x: -x
logger.info('best_score={:.2f}'.format(best_score))
output_file = os.path.join(
cfg['training']['model_dir'], 'ckpts', "{}_{:.2f}_{}.ckpt".format(metric, score, tag)
)
if ckpt_queue.full():
last_score, to_delete = ckpt_queue.get() # get the ckpt with the worst metric score.
if sort_key(last_score) <= sort_key(score):
# remove the ckpt if current ckpt is better than one that in queue.
try:
os.remove(to_delete)
except FileNotFoundError:
logger.warning(
"Wanted to delete old checkpoint %s but " "file does not exist.", to_delete,
)
ckpt_file = save_model(
model=model,
epoch=epoch,
global_step=global_step,
optimizer=optimizer,
scheduler=scheduler,
output_file=output_file,
current_score=score
)
if best_score == score:
symlink_update(
"./" + os.path.basename(ckpt_file),
os.path.join(cfg['training']['model_dir'], 'ckpts', 'best.ckpt')
)
ckpt_queue.put((sort_key(score), ckpt_file))
else:
ckpt_queue.put((sort_key(last_score), to_delete))
else:
ckpt_file = save_model(
model=model,
epoch=epoch,
global_step=global_step,
optimizer=optimizer,
scheduler=scheduler,
output_file=output_file,
current_score=score
)
if best_score == score:
symlink_update(
"./" + os.path.basename(ckpt_file),
os.path.join(cfg['training']['model_dir'], 'ckpts', 'best.ckpt')
)
ckpt_queue.put((sort_key(score), ckpt_file))
def symlink_update(target, link_name):
try:
os.symlink(target, link_name)
except FileExistsError as e:
if e.errno == errno.EEXIST:
os.remove(link_name)
os.symlink(target, link_name)
else:
raise e
def main():
parser = argparse.ArgumentParser("CV-SLT")
parser.add_argument("--config", default="configs/phoenix-2014t_vs2t.yaml", type=str,
help="Training configuration file (yaml).")
parser.add_argument("--wandb", action="store_true", help='turn on wandb')
args = parser.parse_args()
cfg = load_config(args.config)
# =============== for scripts params ===============
cfg['local_rank'], cfg['world_size'], cfg['device'] = init_DDP()
set_seed(seed=cfg["training"].get("random_seed", 42))
model_dir = make_model_dir(
model_dir=cfg['training']['model_dir'],
overwrite=cfg['training'].get('overwrite', False)
)
global logger
logger = make_logger(
model_dir=model_dir,
log_file='train.rank{}.log'.format(cfg['local_rank'])
)
tb_writer = make_writer(model_dir=model_dir)
if args.wandb:
wandb_run = make_wandb(model_dir=model_dir, cfg=cfg)
else:
wandb_run = None
if is_main_process():
os.system('cp {} {}/'.format(args.config, model_dir))
synchronize()
model = build_model(cfg)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
total_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
logger.info('# Total parameters = {}'.format(total_params))
logger.info('# Total trainable parameters = {}'.format(total_params_trainable))
model = DDP(
model,
device_ids=[cfg['local_rank']],
output_device=cfg['local_rank'],
# find_unused_parameters=True,
find_unused_parameters=False,
)
# tokenizer built before data loader
train_dataloader, train_sampler = build_dataloader(
cfg, 'train',
model.module.text_tokenizer,
model.module.gloss_tokenizer
)
dev_dataloader, dev_sampler = build_dataloader(
cfg, 'dev',
model.module.text_tokenizer,
model.module.gloss_tokenizer
)
if is_main_process():
pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
tb_writer = SummaryWriter(log_dir=os.path.join(model_dir, "tensorboard"))
else:
pbar, tb_writer = None, None
optimizer = build_optimizer(config=cfg['training']['optimization'], model=model.module)
scheduler, scheduler_type = build_scheduler(config=cfg['training']['optimization'], optimizer=optimizer)
assert scheduler_type == 'epoch'
total_epoch, start_epoch, global_step = cfg['training']['total_epoch'], 0, 0
val_unit, val_freq = cfg['training']['validation']['unit'], cfg['training']['validation']['freq']
if val_unit == "epoch":
val_freq = 1
global ckpt_queue, best_score
ckpt_queue = queue.PriorityQueue(maxsize=cfg['training']['keep_last_ckpts']) # FIFO queue.
best_score = -100 if '2T' in cfg['task'] else 10000
# RESUME TRAINING
if cfg['training'].get('from_ckpt', False):
synchronize()
ckpt_lst = sorted(os.listdir(os.path.join(model_dir, 'ckpts')))
latest_ckpt = ckpt_lst[-1]
latest_ckpt = os.path.join(model_dir, 'ckpts', latest_ckpt)
state_dict = torch.load(latest_ckpt, 'cuda:{:d}'.format(cfg['local_rank']))
model.module.load_state_dict(state_dict['model_state'])
optimizer.load_state_dict(state_dict['optimizer_state'])
scheduler.load_state_dict(state_dict['scheduler_state'])
start_epoch = state_dict['epoch'] + 1 \
if state_dict['epoch'] is not None else int(latest_ckpt.split('_')[-1][:-5]) + 1
global_step = state_dict['global_step'] + 1 if state_dict['global_step'] is not None else 0
best_score = state_dict['best_score']
torch.manual_seed(cfg["training"].get("random_seed", 42) + start_epoch)
train_dataloader, train_sampler = build_dataloader(
cfg, 'train',
model.module.text_tokenizer,
model.module.gloss_tokenizer
)
dev_dataloader, dev_sampler = build_dataloader(
cfg, 'dev',
model.module.text_tokenizer,
model.module.gloss_tokenizer
)
logger.info('Sucessfully resume training from {:s}'.format(latest_ckpt))
do_recognition = (
cfg['task'] not in ['G2T', 'S2T_glsfree'] and cfg['model']['recognition_weight'] > 0.
if not cfg.get("do_recognition", False) else True
)
do_translation = cfg['task'] != 'S2G' and cfg['model']['translation_weight'] > 0.
if cfg['training']['amp']:
scaler = torch.cuda.amp.GradScaler()
for epoch_no in range(start_epoch, total_epoch):
train_sampler.set_epoch(epoch_no)
logger.info('Epoch {}, Training examples {}'.format(epoch_no, len(train_dataloader.dataset)))
scheduler.step()
for step, batch in enumerate(train_dataloader):
if cfg['training']['amp']:
with torch.cuda.amp.autocast():
model.module.set_train()
output = model.forward(global_step=global_step, is_train=True, **batch)
# with torch.autograd.set_detect_anomaly(True):
scaler.scale(output['total_loss']).backward()
scaler.step(optimizer)
scaler.update()
else:
model.module.set_train()
output = model.forward(global_step=global_step, is_train=True, **batch)
with torch.autograd.set_detect_anomaly(True):
output['total_loss'].backward()
optimizer.step()
model.zero_grad()
optimizer.zero_grad()
if is_main_process() and tb_writer:
for k, v in output.items():
if '_loss' in k:
tb_writer.add_scalar('train/' + k, v, global_step)
if 'factor' in k:
tb_writer.add_scalar('train/' + k, v, global_step)
lr = scheduler.optimizer.param_groups[0]["lr"]
tb_writer.add_scalar('train/learning_rate', lr, global_step)
if wandb_run is not None:
wandb.log({k: v for k, v in output.items() if '_loss' in k})
wandb.log({'learning_rate': lr})
if (
is_main_process() and val_unit == 'step' and global_step % val_freq == 0
and global_step > cfg['training']['validation']['valid_start_step']
):
evaluate_and_save(
cfg=cfg,
model=model.module,
optimizer=optimizer,
scheduler=scheduler,
val_dataloader=dev_dataloader,
tb_writer=tb_writer,
wandb_run=wandb_run,
global_step=global_step,
generate_cfg=cfg['training']['validation']['cfg'],
do_recognition=do_recognition,
do_translation=do_translation,
)
global_step += 1
if pbar:
pbar(step)
if (
is_main_process() and val_unit == 'epoch' and epoch_no % val_freq == 0
and epoch_no >= cfg['training']['validation']['valid_start_epoch']
):
evaluate_and_save(
cfg=cfg,
model=model.module,
optimizer=optimizer,
scheduler=scheduler,
val_dataloader=dev_dataloader,
tb_writer=tb_writer,
wandb_run=wandb_run,
epoch=epoch_no,
generate_cfg=cfg['training']['validation']['cfg'],
do_recognition=do_recognition,
do_translation=do_translation,
)
print()
# test
if is_main_process():
load_model_path = os.path.join(cfg['training']['model_dir'], 'ckpts', 'best.ckpt')
state_dict = torch.load(load_model_path, map_location='cuda')
model.module.load_state_dict(state_dict['model_state'])
epoch, global_step = state_dict.get('epoch', 0), state_dict.get('global_step', 0)
logger.info('Load model ckpt from ' + load_model_path)
# do_translation, do_recognition = cfg['task'] != 'S2G', cfg['task'] != 'G2T'
for split in ['dev', 'test']:
logger.info('Evaluate on {} set'.format(split))
dataloader, sampler = build_dataloader(
cfg, split,
model.module.text_tokenizer,
model.module.gloss_tokenizer
)
evaluation(
cfg=cfg,
model=model.module,
val_dataloader=dataloader,
epoch=epoch,
global_step=global_step,
generate_cfg=cfg['testing']['cfg'],
save_dir=os.path.join(model_dir, split),
do_translation=do_translation,
do_recognition=do_recognition
)
if wandb_run is not None:
wandb_run.finish()
if __name__ == "__main__":
main()