-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprediction.py
296 lines (273 loc) · 13.8 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import pickle
import wandb
import warnings
from collections import defaultdict
from modelling.model import build_model
from utils.checkpoint_average import average_checkpoints
warnings.filterwarnings("ignore")
import argparse
import os
import sys
sys.path.append(os.getcwd()) # slt dir
import torch
from utils.misc import (
get_logger,
set_seed,
load_config,
make_logger, move_to_device,
neq_load_customized
)
from dataset.Dataloader import build_dataloader
from utils.progressbar import ProgressBar
from utils.metrics import bleu, rouge, wer_list
from utils.phoenix_cleanup import clean_phoenix_2014_trans, clean_phoenix_2014
def evaluation(
cfg,
model,
val_dataloader,
tb_writer=None,
wandb_run=None,
epoch=None,
global_step=None,
generate_cfg={},
save_dir=None,
do_translation=True,
do_recognition=True
):
# print()
logger = get_logger()
logger.info(generate_cfg)
if os.environ.get('enable_pbar', '1') == '1':
pbar = ProgressBar(n_total=len(val_dataloader), desc='Validation')
else:
pbar = None
if epoch is not None:
logger.info(
'Evaluation epoch={} validation examples #={}'.format(epoch, len(val_dataloader.dataset))
)
elif global_step is not None:
logger.info(
'Evaluation global step={} validation examples #={}'.format(global_step, len(val_dataloader.dataset))
)
model.eval()
total_val_loss = defaultdict(int)
results = defaultdict(dict)
with torch.no_grad():
for step, batch in enumerate(val_dataloader):
# forward -- loss
batch = move_to_device(batch, cfg['device'])
forward_output = model.forward(is_train=False, **batch)
for k, v in forward_output.items():
if '_loss' in k:
total_val_loss[k] += v.item()
if do_recognition: # wer
# rgb/keypoint/fuse/ensemble_last_logits
for k, gls_logits in forward_output.items():
if 'gloss_logits' not in k or gls_logits is None:
continue
logits_name = k.replace('gloss_logits', '')
if logits_name in ['rgb_', 'keypoint_', 'fuse_', 'ensemble_last_', 'ensemble_early_', '']:
if logits_name == 'ensemble_early_':
input_lengths = forward_output['aux_lengths']['rgb'][-1]
else:
input_lengths = forward_output['input_lengths']
ctc_decode_output = model.predict_gloss_from_logits(
gloss_logits=gls_logits,
beam_size=generate_cfg['recognition']['beam_size'],
input_lengths=input_lengths
)
batch_pred_gls = model.gloss_tokenizer.convert_ids_to_tokens(ctc_decode_output)
for name, gls_hyp, gls_ref in zip(batch['name'], batch_pred_gls, batch['gloss']):
results[name][f'{logits_name}gls_hyp'] = ' '.join(gls_hyp).upper() \
if model.gloss_tokenizer.lower_case else ' '.join(gls_hyp)
results[name]['gls_ref'] = gls_ref.upper() \
if model.gloss_tokenizer.lower_case else gls_ref
# print(logits_name)
# print(results[name][f'{logits_name}gls_hyp'])
# print(results[name]['gls_ref'])
else:
print(logits_name)
raise ValueError
# multi-head
if 'aux_logits' in forward_output:
for stream, logits_list in forward_output['aux_logits'].items(): # ['rgb', 'keypoint]
lengths_list = forward_output['aux_lengths'][stream] # might be empty
for i, (logits, lengths) in enumerate(zip(logits_list, lengths_list)):
ctc_decode_output = model.predict_gloss_from_logits(
gloss_logits=logits,
beam_size=generate_cfg['recognition']['beam_size'],
input_lengths=lengths)
batch_pred_gls = model.gloss_tokenizer.convert_ids_to_tokens(ctc_decode_output)
for name, gls_hyp, gls_ref in zip(batch['name'], batch_pred_gls, batch['gloss']):
results[name][f'{stream}_aux_{i}_gls_hyp'] = ' '.join(gls_hyp).upper() \
if model.gloss_tokenizer.lower_case else ' '.join(gls_hyp)
if do_translation:
generate_output = model.generate_txt(
transformer_inputs=forward_output['transformer_inputs'],
generate_cfg=generate_cfg['translation']
)
if forward_output.get("posterior_encoder_outputs", None) is not None:
forward_output['transformer_inputs'].update(
{"encoder_outputs": forward_output['posterior_encoder_outputs']}
)
forward_output['posterior_decoded_sequences'] = model.generate_txt(
transformer_inputs=forward_output['transformer_inputs'],
generate_cfg=generate_cfg['translation']
)['decoded_sequences']
# Tips: to be compatible with version without posterior_decoded_sequences.
if forward_output.get("posterior_decoded_sequences", None) is None:
forward_output['posterior_decoded_sequences'] = batch['text']
# decoded_sequences
for name, txt_hyp, txt_ref, txt_ref_posterior_decoded in zip(
batch['name'],
generate_output['decoded_sequences'],
batch['text'],
forward_output['posterior_decoded_sequences']
):
results[name]['txt_hyp'], results[name]['txt_ref'] = txt_hyp, txt_ref
results[name]['txt_hyp_posterior_decoded'] = txt_ref_posterior_decoded
# misc
if pbar:
pbar(step)
print()
# logging and tb_writer
for k, v in total_val_loss.items():
logger.info('{} Average:{:.4f}'.format(k, v / len(val_dataloader)))
if tb_writer:
tb_writer.add_scalar('eval/' + k, v / len(val_dataloader), epoch if epoch is not None else global_step)
if wandb_run:
wandb.log({f'eval/{k}': v / len(val_dataloader)})
# evaluation (Recognition:WER, Translation:B/M)
evaluation_results = {}
if do_recognition:
evaluation_results['wer'] = 200
for hyp_name in results[name].keys():
if 'gls_hyp' not in hyp_name:
continue
k = hyp_name.replace('gls_hyp', '')
if cfg['data']['dataset_name'].lower() == 'phoenix-2014t':
gls_ref = [clean_phoenix_2014_trans(results[n]['gls_ref']) for n in results]
gls_hyp = [clean_phoenix_2014_trans(results[n][hyp_name]) for n in results]
elif cfg['data']['dataset_name'].lower() == 'phoenix-2014':
gls_ref = [clean_phoenix_2014(results[n]['gls_ref']) for n in results]
gls_hyp = [clean_phoenix_2014(results[n][hyp_name]) for n in results]
elif cfg['data']['dataset_name'].lower() in ['csl-daily', 'cslr']:
gls_ref = [results[n]['gls_ref'] for n in results]
gls_hyp = [results[n][hyp_name] for n in results]
wer_results = wer_list(hypotheses=gls_hyp, references=gls_ref)
evaluation_results[k + 'wer_list'] = wer_results
logger.info('{}WER: {:.2f}'.format(k, wer_results['wer']))
if tb_writer:
tb_writer.add_scalar(f'eval/{k}WER', wer_results['wer'], epoch if epoch != None else global_step)
if wandb_run is not None:
wandb.log({f'eval/{k}WER': wer_results['wer']})
evaluation_results['wer'] = min(wer_results['wer'], evaluation_results['wer'])
if do_translation:
txt_ref = [results[n]['txt_ref'] for n in results]
txt_hyp = [results[n]['txt_hyp'] for n in results]
bleu_dict = bleu(references=txt_ref, hypotheses=txt_hyp, level=cfg['data']['level'])
rouge_score = rouge(references=txt_ref, hypotheses=txt_hyp, level=cfg['data']['level'])
logger.info(", ".join('{}: {:.2f}'.format(k, v) for k, v in bleu_dict.items()))
txt_posterior_iter_hyp = [results[n]['txt_hyp_posterior_decoded'] for n in results]
bleu_dict_posterior_decoded = bleu(references=txt_ref, hypotheses=txt_posterior_iter_hyp, level=cfg['data']['level'])
rouge_score_posterior_decoded = rouge(references=txt_ref, hypotheses=txt_posterior_iter_hyp, level=cfg['data']['level'])
logger.info(", ".join('{}: {:.2f}'.format(k, v) for k, v in bleu_dict_posterior_decoded.items())+"-Posterior")
logger.info('ROUGE: {:.2f}'.format(rouge_score))
logger.info('ROUGE: {:.2f}-Posterior'.format(rouge_score_posterior_decoded))
evaluation_results['rouge'], evaluation_results['bleu'] = rouge_score, bleu_dict
if tb_writer:
tag = epoch if epoch is not None else global_step
tb_writer.add_scalar('eval/BLEU4', bleu_dict['bleu4'], tag)
tb_writer.add_scalar('eval/ROUGE', rouge_score, tag)
tb_writer.add_scalar('eval/BLEU4_posterior_iter', bleu_dict_posterior_decoded['bleu4'], tag)
tb_writer.add_scalar('eval/ROUGE_posterior_iter', rouge_score_posterior_decoded, tag)
if wandb_run is not None:
wandb.log({'eval/BLEU4': bleu_dict['bleu4']})
wandb.log({'eval/ROUGE': rouge_score})
# save
if save_dir:
os.makedirs(save_dir, exist_ok=True)
with open(os.path.join(save_dir, 'results.pkl'), 'wb') as f:
pickle.dump(results, f)
with open(os.path.join(save_dir, 'evaluation_results.pkl'), 'wb') as f:
pickle.dump(evaluation_results, f)
parent_dir = os.path.dirname(save_dir)
if save_dir.endswith("test"):
r = "R_{:.2f}_".format(evaluation_results['rouge'])
b = "_".join('{}_{:.2f}'.format(k, v) for k, v in evaluation_results['bleu'].items())
file_name = "Test_" + r + b
with open(os.path.join(parent_dir, file_name), 'w') as f:
f.write("")
# posterior decode res
r = "R_{:.2f}_".format(rouge_score_posterior_decoded)
b = "_".join('{}_{:.2f}'.format(k, v) for k, v in bleu_dict_posterior_decoded.items())
file_name = "Posterior_Test_" + r + b
with open(os.path.join(parent_dir, file_name), 'w') as f:
f.write("")
elif save_dir.endswith("dev"):
r = "R_{:.2f}_".format(evaluation_results['rouge'])
b = "_".join('{}_{:.2f}'.format(k, v) for k, v in evaluation_results['bleu'].items())
file_name = "Dev_" + r + b
with open(os.path.join(parent_dir, file_name), 'w') as f:
f.write("")
r = "R_{:.2f}_".format(rouge_score_posterior_decoded)
b = "_".join('{}_{:.2f}'.format(k, v) for k, v in bleu_dict_posterior_decoded.items())
file_name = "Posterior_Dev_" + r + b
with open(os.path.join(parent_dir, file_name), 'w') as f:
f.write("")
else:
# save_dir.endswith("validation"):
pass
return evaluation_results
def add_parser():
return args, cfg
if __name__ == "__main__":
parser = argparse.ArgumentParser("CV-SLT")
parser.add_argument("--config", default="configs/default.yaml", type=str,
help="Training configuration file (yaml).")
parser.add_argument("--save-subdir", default='prediction', type=str)
parser.add_argument('--ckpt-name', default='best.ckpt', type=str)
args = parser.parse_args()
cfg = load_config(args.config)
# =============== for scripts params ===============
model_dir = cfg['training']['model_dir']
set_seed(seed=cfg["training"].get("random_seed", 42))
os.makedirs(model_dir, exist_ok=True)
global logger
logger = make_logger(model_dir=model_dir, log_file='prediction.log')
cfg['device'] = torch.device('cuda')
model = build_model(cfg)
# load model
load_model_path = os.path.join(model_dir, 'ckpts', args.ckpt_name)
if os.path.isfile(load_model_path):
state_dict = torch.load(load_model_path, map_location='cuda')
logger.info('Load model ckpt from ' + load_model_path)
neq_load_customized(model, state_dict['model_state'], verbose=True)
epoch = state_dict.get('epoch', 0)
global_step = state_dict.get('global_step', 0)
else:
logger.info(f'{load_model_path} does not exist')
epoch, global_step = 0, 0
do_translation, do_recognition = cfg['task'] != 'S2G', cfg['task'] != 'G2T'
do_recognition = (
cfg['task'] not in ['G2T', 'S2T_glsfree'] and cfg['model']['recognition_weight'] > 0.
if not cfg.get("do_recognition", False) else True
)
for split in ['dev', 'test']:
logger.info('Evaluate on {} set'.format(split))
dataloader, sampler = build_dataloader(
cfg, split,
model.text_tokenizer,
model.gloss_tokenizer
)
evaluation_result = evaluation(
cfg=cfg,
model=model,
val_dataloader=dataloader,
epoch=epoch,
global_step=global_step,
generate_cfg=cfg['testing']['cfg'],
save_dir=os.path.join(model_dir, args.save_subdir, split),
do_translation=do_translation,
do_recognition=do_recognition,
)