|
| 1 | +// Copyright 2021 Developers of the Rand project. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 4 | +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 5 | +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 6 | +// option. This file may not be copied, modified, or distributed |
| 7 | +// except according to those terms. |
| 8 | + |
| 9 | +//! The Fréchet distribution. |
| 10 | +
|
| 11 | +use crate::{Distribution, OpenClosed01}; |
| 12 | +use core::fmt; |
| 13 | +use num_traits::Float; |
| 14 | +use rand::Rng; |
| 15 | + |
| 16 | +/// Samples floating-point numbers according to the Fréchet distribution |
| 17 | +/// |
| 18 | +/// This distribution has density function: |
| 19 | +/// `f(x) = [(x - μ) / σ]^(-1 - α) exp[-(x - μ) / σ]^(-α) α / σ`, |
| 20 | +/// where `μ` is the location parameter, `σ` the scale parameter, and `α` the shape parameter. |
| 21 | +/// |
| 22 | +/// # Example |
| 23 | +/// ``` |
| 24 | +/// use rand::prelude::*; |
| 25 | +/// use rand_distr::Frechet; |
| 26 | +/// |
| 27 | +/// let val: f64 = thread_rng().sample(Frechet::new(0.0, 1.0, 1.0).unwrap()); |
| 28 | +/// println!("{}", val); |
| 29 | +/// ``` |
| 30 | +#[derive(Clone, Copy, Debug)] |
| 31 | +#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))] |
| 32 | +pub struct Frechet<F> |
| 33 | +where |
| 34 | + F: Float, |
| 35 | + OpenClosed01: Distribution<F>, |
| 36 | +{ |
| 37 | + location: F, |
| 38 | + scale: F, |
| 39 | + shape: F, |
| 40 | +} |
| 41 | + |
| 42 | +/// Error type returned from `Frechet::new`. |
| 43 | +#[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| 44 | +pub enum Error { |
| 45 | + /// location is infinite or NaN |
| 46 | + LocationNotFinite, |
| 47 | + /// scale is not finite positive number |
| 48 | + ScaleNotPositive, |
| 49 | + /// shape is not finite positive number |
| 50 | + ShapeNotPositive, |
| 51 | +} |
| 52 | + |
| 53 | +impl fmt::Display for Error { |
| 54 | + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 55 | + f.write_str(match self { |
| 56 | + Error::LocationNotFinite => "location is not finite in Frechet distribution", |
| 57 | + Error::ScaleNotPositive => "scale is not positive and finite in Frechet distribution", |
| 58 | + Error::ShapeNotPositive => "shape is not positive and finite in Frechet distribution", |
| 59 | + }) |
| 60 | + } |
| 61 | +} |
| 62 | + |
| 63 | +#[cfg(feature = "std")] |
| 64 | +#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))] |
| 65 | +impl std::error::Error for Error {} |
| 66 | + |
| 67 | +impl<F> Frechet<F> |
| 68 | +where |
| 69 | + F: Float, |
| 70 | + OpenClosed01: Distribution<F>, |
| 71 | +{ |
| 72 | + /// Construct a new `Frechet` distribution with given `location`, `scale`, and `shape`. |
| 73 | + pub fn new(location: F, scale: F, shape: F) -> Result<Frechet<F>, Error> { |
| 74 | + if scale <= F::zero() || scale.is_infinite() || scale.is_nan() { |
| 75 | + return Err(Error::ScaleNotPositive); |
| 76 | + } |
| 77 | + if shape <= F::zero() || shape.is_infinite() || shape.is_nan() { |
| 78 | + return Err(Error::ShapeNotPositive); |
| 79 | + } |
| 80 | + if location.is_infinite() || location.is_nan() { |
| 81 | + return Err(Error::LocationNotFinite); |
| 82 | + } |
| 83 | + Ok(Frechet { |
| 84 | + location, |
| 85 | + scale, |
| 86 | + shape, |
| 87 | + }) |
| 88 | + } |
| 89 | +} |
| 90 | + |
| 91 | +impl<F> Distribution<F> for Frechet<F> |
| 92 | +where |
| 93 | + F: Float, |
| 94 | + OpenClosed01: Distribution<F>, |
| 95 | +{ |
| 96 | + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F { |
| 97 | + let x: F = rng.sample(OpenClosed01); |
| 98 | + self.location + self.scale * (-x.ln()).powf(-self.shape.recip()) |
| 99 | + } |
| 100 | +} |
| 101 | + |
| 102 | +#[cfg(test)] |
| 103 | +mod tests { |
| 104 | + use super::*; |
| 105 | + |
| 106 | + #[test] |
| 107 | + #[should_panic] |
| 108 | + fn test_zero_scale() { |
| 109 | + Frechet::new(0.0, 0.0, 1.0).unwrap(); |
| 110 | + } |
| 111 | + |
| 112 | + #[test] |
| 113 | + #[should_panic] |
| 114 | + fn test_infinite_scale() { |
| 115 | + Frechet::new(0.0, core::f64::INFINITY, 1.0).unwrap(); |
| 116 | + } |
| 117 | + |
| 118 | + #[test] |
| 119 | + #[should_panic] |
| 120 | + fn test_nan_scale() { |
| 121 | + Frechet::new(0.0, core::f64::NAN, 1.0).unwrap(); |
| 122 | + } |
| 123 | + |
| 124 | + #[test] |
| 125 | + #[should_panic] |
| 126 | + fn test_zero_shape() { |
| 127 | + Frechet::new(0.0, 1.0, 0.0).unwrap(); |
| 128 | + } |
| 129 | + |
| 130 | + #[test] |
| 131 | + #[should_panic] |
| 132 | + fn test_infinite_shape() { |
| 133 | + Frechet::new(0.0, 1.0, core::f64::INFINITY).unwrap(); |
| 134 | + } |
| 135 | + |
| 136 | + #[test] |
| 137 | + #[should_panic] |
| 138 | + fn test_nan_shape() { |
| 139 | + Frechet::new(0.0, 1.0, core::f64::NAN).unwrap(); |
| 140 | + } |
| 141 | + |
| 142 | + #[test] |
| 143 | + #[should_panic] |
| 144 | + fn test_infinite_location() { |
| 145 | + Frechet::new(core::f64::INFINITY, 1.0, 1.0).unwrap(); |
| 146 | + } |
| 147 | + |
| 148 | + #[test] |
| 149 | + #[should_panic] |
| 150 | + fn test_nan_location() { |
| 151 | + Frechet::new(core::f64::NAN, 1.0, 1.0).unwrap(); |
| 152 | + } |
| 153 | + |
| 154 | + #[test] |
| 155 | + fn test_sample_against_cdf() { |
| 156 | + fn quantile_function(x: f64) -> f64 { |
| 157 | + (-x.ln()).recip() |
| 158 | + } |
| 159 | + let location = 0.0; |
| 160 | + let scale = 1.0; |
| 161 | + let shape = 1.0; |
| 162 | + let iterations = 100_000; |
| 163 | + let increment = 1.0 / iterations as f64; |
| 164 | + let probabilities = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]; |
| 165 | + let mut quantiles = [0.0; 9]; |
| 166 | + for (i, p) in probabilities.iter().enumerate() { |
| 167 | + quantiles[i] = quantile_function(*p); |
| 168 | + } |
| 169 | + let mut proportions = [0.0; 9]; |
| 170 | + let d = Frechet::new(location, scale, shape).unwrap(); |
| 171 | + let mut rng = crate::test::rng(1); |
| 172 | + for _ in 0..iterations { |
| 173 | + let replicate = d.sample(&mut rng); |
| 174 | + for (i, q) in quantiles.iter().enumerate() { |
| 175 | + if replicate < *q { |
| 176 | + proportions[i] += increment; |
| 177 | + } |
| 178 | + } |
| 179 | + } |
| 180 | + assert!(proportions |
| 181 | + .iter() |
| 182 | + .zip(&probabilities) |
| 183 | + .all(|(p_hat, p)| (p_hat - p).abs() < 0.003)) |
| 184 | + } |
| 185 | +} |
0 commit comments