|
| 1 | +//! Implementation of the sampling algorithm in |
| 2 | +//! |
| 3 | +//! > Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka. |
| 4 | +//! > The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete |
| 5 | +//! > Probability Distributions. In AISTATS 2020: Proceedings of the 23rd |
| 6 | +//! > International Conference on Artificial Intelligence and Statistics, |
| 7 | +//! > Proceedings of Machine Learning Research 108, Palermo, Sicily, Italy, 2020. |
| 8 | +use alloc::vec::Vec; |
| 9 | +use alloc::vec; |
| 10 | + |
| 11 | +use super::WeightedError; |
| 12 | + |
| 13 | +use crate::Distribution; |
| 14 | +use rand::Rng; |
| 15 | + |
| 16 | +fn bit_length(x: i32) -> i32 { |
| 17 | + (32 - x.leading_zeros()) as i32 |
| 18 | +} |
| 19 | + |
| 20 | +/// Distribution of weighted indices with Fast Loaded Dice Roller method. |
| 21 | +#[derive(Debug)] |
| 22 | +pub struct WeightedIndex { |
| 23 | + n: i32, m: i32, k: i32, r: i32, |
| 24 | + h1: Vec<i32>, h2: Vec<i32>, |
| 25 | +} |
| 26 | + |
| 27 | +impl WeightedIndex { |
| 28 | + /// Preprocess weights. |
| 29 | + pub fn new(weights: Vec<i32>) -> Result<Self, WeightedError> { |
| 30 | + let n = weights.len(); |
| 31 | + if n == 0 { |
| 32 | + return Err(WeightedError::NoItem); |
| 33 | + } else if n > ::core::i32::MAX as usize { |
| 34 | + return Err(WeightedError::TooMany); |
| 35 | + } |
| 36 | + let n = n as i32; |
| 37 | + let mut m = 0; |
| 38 | + for &w in &weights { |
| 39 | + if w < 0 { |
| 40 | + return Err(WeightedError::InvalidWeight); |
| 41 | + } |
| 42 | + m += w; |
| 43 | + } |
| 44 | + if m == 0 { |
| 45 | + return Err(WeightedError::AllWeightsZero); |
| 46 | + } |
| 47 | + let k = bit_length(m - 1); |
| 48 | + let r = (1 << k) - m; |
| 49 | + |
| 50 | + let mut h1 = vec![0; k as usize]; |
| 51 | + let mut h2 = vec![-1; ((n + 1) * k) as usize]; |
| 52 | + |
| 53 | + let mut d; |
| 54 | + for j in 0..k { |
| 55 | + d = 0; |
| 56 | + for i in 0..n { |
| 57 | + let w = (weights[i as usize] >> ((k-1) - j)) & 1; |
| 58 | + if w > 0 { |
| 59 | + h1[j as usize] += 1; |
| 60 | + h2[(d*k + j) as usize] = i; |
| 61 | + d += 1; |
| 62 | + } |
| 63 | + } |
| 64 | + let w = (r >> ((k - 1) - j)) & 1; |
| 65 | + if w > 0 { |
| 66 | + h1[j as usize] += 1; |
| 67 | + h2[(d*k + j) as usize] = n; |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + Ok(WeightedIndex { n, m, k, r, h1, h2 }) |
| 72 | + } |
| 73 | +} |
| 74 | + |
| 75 | +impl Distribution<i32> for WeightedIndex { |
| 76 | + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i32 { |
| 77 | + let n = self.n; |
| 78 | + let k = self.k; |
| 79 | + let h1 = &self.h1; |
| 80 | + let h2 = &self.h2; |
| 81 | + let mut c: i32 = 0; |
| 82 | + let mut d: i32 = 0; |
| 83 | + |
| 84 | + loop { |
| 85 | + let b: bool = rng.gen(); |
| 86 | + let b = b as i32; |
| 87 | + d = 2*d + (1 - b); |
| 88 | + if d < h1[c as usize] { |
| 89 | + let z = h2[(d*k + c) as usize]; |
| 90 | + if z < n { |
| 91 | + return z; |
| 92 | + } else { |
| 93 | + d = 0; |
| 94 | + c = 0; |
| 95 | + } |
| 96 | + } else { |
| 97 | + d -= h1[c as usize]; |
| 98 | + c += 1; |
| 99 | + } |
| 100 | + } |
| 101 | + } |
| 102 | +} |
| 103 | + |
| 104 | +#[cfg(test)] |
| 105 | +mod test { |
| 106 | + use super::*; |
| 107 | + use rand::distributions::Uniform; |
| 108 | + |
| 109 | + #[test] |
| 110 | + fn test_weighted_fldr() { |
| 111 | + const NUM_WEIGHTS: i32 = 10; |
| 112 | + const ZERO_WEIGHT_INDEX: i32 = 3; |
| 113 | + const NUM_SAMPLES: i32 = 15000; |
| 114 | + let mut rng = crate::test::rng(0x9c9fa0b0580a7031); |
| 115 | + |
| 116 | + let weights = { |
| 117 | + let mut weights = Vec::with_capacity(NUM_WEIGHTS as usize); |
| 118 | + let random_weight_distribution = Uniform::new_inclusive( |
| 119 | + 0, NUM_WEIGHTS, |
| 120 | + ); |
| 121 | + for _ in 0..NUM_WEIGHTS { |
| 122 | + weights.push(rng.sample(&random_weight_distribution)); |
| 123 | + } |
| 124 | + weights[ZERO_WEIGHT_INDEX as usize] = 0; |
| 125 | + weights |
| 126 | + }; |
| 127 | + let weight_sum = weights.iter().map(|w| *w).sum::<i32>(); |
| 128 | + let expected_counts = weights |
| 129 | + .iter() |
| 130 | + .map(|&w| (w as f64) / (weight_sum as f64) * NUM_SAMPLES as f64) |
| 131 | + .collect::<Vec<f64>>(); |
| 132 | + let weight_distribution = WeightedIndex::new(weights).unwrap(); |
| 133 | + |
| 134 | + let mut counts = vec![0; NUM_WEIGHTS as usize]; |
| 135 | + for _ in 0..NUM_SAMPLES { |
| 136 | + counts[rng.sample(&weight_distribution) as usize] += 1; |
| 137 | + } |
| 138 | + |
| 139 | + assert_eq!(counts[ZERO_WEIGHT_INDEX as usize], 0); |
| 140 | + for (count, expected_count) in counts.into_iter().zip(expected_counts) { |
| 141 | + let difference = (count as f64 - expected_count).abs(); |
| 142 | + let max_allowed_difference = NUM_SAMPLES as f64 / NUM_WEIGHTS as f64 * 0.1; |
| 143 | + assert!(difference <= max_allowed_difference); |
| 144 | + } |
| 145 | + |
| 146 | + assert_eq!( |
| 147 | + WeightedIndex::new(vec![]).unwrap_err(), |
| 148 | + WeightedError::NoItem |
| 149 | + ); |
| 150 | + assert_eq!( |
| 151 | + WeightedIndex::new(vec![0]).unwrap_err(), |
| 152 | + WeightedError::AllWeightsZero |
| 153 | + ); |
| 154 | + |
| 155 | + // Signed integer special cases |
| 156 | + assert_eq!( |
| 157 | + WeightedIndex::new(vec![-1]).unwrap_err(), |
| 158 | + WeightedError::InvalidWeight |
| 159 | + ); |
| 160 | + assert_eq!( |
| 161 | + WeightedIndex::new(vec![core::i32::MIN]).unwrap_err(), |
| 162 | + WeightedError::InvalidWeight |
| 163 | + ); |
| 164 | + } |
| 165 | +} |
0 commit comments