@@ -5,7 +5,7 @@ use cauchy::*;
55use  num_traits:: { ToPrimitive ,  Zero } ; 
66
77/// Result of LeastSquares 
8- pub  struct  LeastSquaresOutput < A :  Scalar >  { 
8+ pub  struct  LeastSquaresOwned < A :  Scalar >  { 
99    /// singular values 
1010pub  singular_values :  Vec < A :: Real > , 
1111    /// The rank of the input matrix A 
@@ -21,7 +21,7 @@ pub trait LeastSquaresSvdDivideConquer_: Scalar {
2121        a_layout :  MatrixLayout , 
2222        a :  & mut  [ Self ] , 
2323        b :  & mut  [ Self ] , 
24-     )  -> Result < LeastSquaresOutput < Self > > ; 
24+     )  -> Result < LeastSquaresOwned < Self > > ; 
2525
2626    /// Solve least square problems $\argmin_X \| AX - B\|$ 
2727fn  least_squares_nrhs ( 
@@ -46,7 +46,7 @@ macro_rules! impl_least_squares {
4646                l:  MatrixLayout , 
4747                a:  & mut  [ Self ] , 
4848                b:  & mut  [ Self ] , 
49-             )  -> Result <LeastSquaresOutput <Self >> { 
49+             )  -> Result <LeastSquaresOwned <Self >> { 
5050                let  b_layout = l. resized( b. len( )  as  i32 ,  1 ) ; 
5151                Self :: least_squares_nrhs( l,  a,  b_layout,  b) 
5252            } 
@@ -56,7 +56,7 @@ macro_rules! impl_least_squares {
5656                a:  & mut  [ Self ] , 
5757                b_layout:  MatrixLayout , 
5858                b:  & mut  [ Self ] , 
59-             )  -> Result <LeastSquaresOutput <Self >> { 
59+             )  -> Result <LeastSquaresOwned <Self >> { 
6060                // Minimize |b - Ax|_2 
6161                // 
6262                // where 
@@ -160,7 +160,7 @@ macro_rules! impl_least_squares {
160160                    transpose_over( b_layout,  & b_t,  b) ; 
161161                } 
162162
163-                 Ok ( LeastSquaresOutput  { 
163+                 Ok ( LeastSquaresOwned  { 
164164                    singular_values, 
165165                    rank, 
166166                } ) 
0 commit comments