-
Notifications
You must be signed in to change notification settings - Fork 13k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
🔬 Tracking issue for generic associated types (GAT) #44265
Comments
Here is a kind of implementation plan I will endeavor to keep updated.
|
Let me start by writing about the AST in more detail. First let's discuss how it works today: A A Methods are an interesting case because they can already be made generic. Those generic parameters are declared in the field My take is that the best thing to do would be to "lift" Perhaps a decent first PR would be to just do that change, keeping all other existing functionality the same. That is, we would more |
@nikomatsakis Cool! Thank you so much! I started experimenting with this last night and I'm proud to say that I found the same places you pointed to in your comment about the AST. 😄 (Given that this was my first time in rustc, I count that as an accomplishment!) I didn't think to lift generics into Here's the change I would have made: pub enum TraitItemKind {
// Generics aren't supported here yet
Const(P<Ty>, Option<P<Expr>>),
// `Generics` is already a field in `MethodSig`
Method(MethodSig, Option<P<Block>>),
// Added `Generics` here:
Type(Generics, TyParamBounds, Option<P<Ty>>),
Macro(Mac),
} Edit: Answer by nikomatsakis on Gitter
|
All right! Next step is to extend the parser. Here are a few tips. Let's start with trait items. This routine parses trait items. We want to extend the case that handles associated types to also parse things like Currently it is using Once we've done that, we should be able to add some parsing tests. I would do that by making a directory like Something else -- we need to feature gate this work at this point, to avoid people using this stuff in stable builds. There are some instructions for adding a feature-gate here on forge (see the final section). We should add a |
Move Generics from MethodSig to TraitItem and ImplItem As part of `rust-impl-period/WG-compiler-traits`, we want to "lift" `Generics` from `MethodSig` into `TraitItem` and `ImplItem`. This is in preparation for adding associated type generics. (#44265 (comment)) Currently this change is only made in the AST. In the future, it may also impact the HIR. (Still discussing) To understand this PR, it's probably best to start from the changes to `ast.rs` and then work your way to the other files to understand the far reaching effects of this change. r? @nikomatsakis
To setup name resolution, I think all we have to do is to get the proper "ribs" in place (the name resolution stuff organizes the sets of names that are in scope into ribs; each rib represents one binding level). e.g. for an impl: impl<A,B> Foo<B> for Vec<A> {
fn bar<T,U>(x: ...) {
for y in ... {
}
}
} we would have the following ribs:
In general, modeling things on how methods work is not a bad idea. We might also do a bit of "future proofing" here, I suppose. Here is the code that brings a method's type parameters into scope (this is for a method defined in a trait): rust/src/librustc_resolve/lib.rs Lines 1890 to 1892 in a35a3ab
Whereas for a rust/src/librustc_resolve/lib.rs Lines 1897 to 1901 in a35a3ab
Now that generics are in place on every trait/impl item, I think we probably want to remove the handling for Other points of interest: You get the idea. @petrochenkov -- sound about right? |
Everything looks correct. |
Generic Associated Types Parsing & Name Resolution Hi! This PR adds parsing for generic associated types! 🎉 🎉 🎉 Tracking Issue: #44265 ## Notes For Reviewers * [x] I still need to add the stdout and stderr files to my ui tests. It takes me a *long* time to compile the compiler locally, so I'm going to add this as soon as possible in the next day or so. * [ ] My current ui tests aren't very good or very thorough. I'm reusing the `parse_generics` and `parse_where_clause` methods from elsewhere in the parser, so my changes work without being particularly complex. I'm not sure if I should duplicate all of the generics test cases for generic associated types. It might actually be appropriate to duplicate everything here, since we don't want to rely on an implementation detail in case it changes in the future. If you think so too, I'll adapt all of the generics test cases into the generic associated types test cases. * [ ] There is still more work required to make the run-pass tests pass here. In particular, we need to make the following errors disappear: ``` error[E0110]: lifetime parameters are not allowed on this type --> ./src/test/run-pass/rfc1598-generic-associated-types/streaming_iterator.rs:23:41 | 23 | bar: <T as StreamingIterator>::Item<'static>, | ^^^^^^^ lifetime parameter not allowed on this type ``` ``` error[E0261]: use of undeclared lifetime name `'a` --> ./src/test/run-pass/rfc1598-generic-associated-types/iterable.rs:15:47 | 15 | type Iter<'a>: Iterator<Item = Self::Item<'a>>; | ^^ undeclared lifetime ``` There is a FIXME comment in streaming_iterator. If you uncomment that line, you get the following: ``` error: expected one of `!`, `+`, `,`, `::`, or `>`, found `=` --> ./src/test/run-pass/rfc1598-generic-associated-types/streaming_iterator.rs:29:45 | 29 | fn foo<T: for<'a> StreamingIterator<Item<'a>=&'a [i32]>>(iter: T) { /* ... */ } | ^ expected one of `!`, `+`, `,`, `::`, or `>` here ``` r? @nikomatsakis
This commit updates the revision of embassy-time and embassy-sync in infra/pre-provision to fix the following compilation error: error[E0107]: this struct takes 1 generic argument but 2 generic arguments were supplied --> /.cargo/git/checkouts/btmesh-e14acedbce757b27/6840160/btmesh-device/src/lib.rs:34:27 | 34 | embassy_sync::signal::Signal<embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex, T>; | ^^^^^^ expected 1 generic argument - help: remove this generic argument | note: struct defined here, with 1 generic parameter: `T` --> /.cargo/git/checkouts/embassy-9312dcb0ed774b29/3b58ac1/embassy-sync/src/signal.rs:31:12 | 31 | pub struct Signal<T> { | ^^^^^^ - For more information about this error, try `rustc --explain E0107`. error: could not compile `btmesh-device` due to previous error The commit also adds a rust-toolchain.toml to configure nightly rustc as currently there a number of compilation errors like the following two: error[E0658]: generic associated types are unstable --> /.cargo/git/checkouts/embassy-9312dcb0ed774b29/b7d0944/embassy-sync/src/pipe.rs:450:9 | 450 | / type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> 451 | | where 452 | | Self: 'a; | |_____________________^ | = note: see issue #44265 <rust-lang/rust#44265> for more information = help: add `#![feature(generic_associated_types)]` to the crate attributes to enable error[E0658]: where clauses on associated types are unstable --> /.cargo/git/checkouts/embassy-9312dcb0ed774b29/b7d0944/embassy-sync/src/pipe.rs:450:9 | 450 | / type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> 451 | | where 452 | | Self: 'a; | |_____________________^ | = note: see issue #44265 <rust-lang/rust#44265> for more information = help: add `#![feature(generic_associated_types)]` to the crate attributes to enable Compiling cargo_metadata v0.15.0 For more information about this error, try `rustc --explain E0658`. error: could not compile `embassy-sync` due to 18 previous errors warning: build failed, waiting for other jobs to finish...
The MSRV (minimum supported Rust version) is the earliest version capable of building a project. In the case of the capnp crate, the MSRV is 1.65.0, due to the use of GATs. Having the MSRV in Cargo.toml helps display better error messages when the Rust version is too old to build a project. eg: > error: package `capnp v0.15.0 (/Users/maxime/Code/capnproto-rust/capnp)` > cannot be built because it requires rustc 1.65.0 or newer, while the > currently active rustc version is 1.64.0 Without it, the error messages are more confusing. > error[E0658]: generic associated types are unstable > --> capnp/src/traits.rs:73:5 > | > 73 | type Builder<'a>: FromStructBuilder<'a> + HasStructSize; > | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > | > = note: see issue #44265 <rust-lang/rust#44265> for more information
The MSRV (minimum supported Rust version) is the earliest version capable of building a project. In the case of the capnp crate, the MSRV is 1.65.0, due to the use of GATs. Having the MSRV in Cargo.toml helps display better error messages when the Rust version is too old to build a project. eg: > error: package `capnp v0.15.0 (/Users/maxime/Code/capnproto-rust/capnp)` > cannot be built because it requires rustc 1.65.0 or newer, while the > currently active rustc version is 1.64.0 Without it, the error messages are more confusing. > error[E0658]: generic associated types are unstable > --> capnp/src/traits.rs:73:5 > | > 73 | type Builder<'a>: FromStructBuilder<'a> + HasStructSize; > | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > | > = note: see issue #44265 <rust-lang/rust#44265> for more information Cargo.toml docs: https://doc.rust-lang.org/cargo/reference/manifest.html#the-rust-version-field
Stabilize generic associated types Closes #44265 r? `@nikomatsakis` # ⚡ Status of the discussion ⚡ * [x] There have been several serious concerns raised, [summarized here](rust-lang/rust#96709 (comment)). * [x] There has also been a [deep-dive comment](rust-lang/rust#96709 (comment)) explaining some of the "patterns of code" that are enabled by GATs, based on use-cases posted to this thread or on the tracking issue. * [x] We have modeled some aspects of GATs in [a-mir-formality](https://github.com/nikomatsakis/a-mir-formality) to give better confidence in how they will be resolved in the future. [You can read a write-up here](https://github.com/rust-lang/types-team/blob/master/minutes/2022-07-08-implied-bounds-and-wf-checking.md). * [x] The major points of the discussion have been [summarized on the GAT initiative repository](https://rust-lang.github.io/generic-associated-types-initiative/mvp.html). * [x] [FCP has been proposed](rust-lang/rust#96709 (comment)) and we are awaiting final decisions and discussion amidst the relevant team members. # Stabilization proposal This PR proposes the stabilization of `#![feature(generic_associated_types)]`. While there a number of future additions to be made and bugs to be fixed (both discussed below), properly doing these will require significant language design and will ultimately likely be backwards-compatible. Given the overwhelming desire to have some form of generic associated types (GATs) available on stable and the stability of the "simple" uses, stabilizing the current subset of GAT features is almost certainly the correct next step. Tracking issue: #44265 Initiative: https://rust-lang.github.io/generic-associated-types-initiative/ RFC: https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md Version: 1.65 (2022-08-22 => beta, 2022-11-03 => stable). ## Motivation There are a myriad of potential use cases for GATs. Stabilization unblocks probable future language features (e.g. async functions in traits), potential future standard library features (e.g. a `LendingIterator` or some form of `Iterator` with a lifetime generic), and a plethora of user use cases (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). There are a myriad of potential use cases for GATs. First, there are many users that have chosen to not use GATs primarily because they are not stable (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). Second, while language feature desugaring isn't *blocked* on stabilization, it gives more confidence on using the feature. Likewise, library features like `LendingIterator` are not necessarily blocked on stabilization to be implemented unstably; however few, if any, public-facing APIs actually use unstable features. This feature has a long history of design, discussion, and developement - the RFC was first introduced roughly 6 years ago. While there are still a number of features left to implement and bugs left to fix, it's clear that it's unlikely those will have backwards-incompatibility concerns. Additionally, the bugs that do exist do not strongly impede the most-common use cases. ## What is stabilized The primary language feature stabilized here is the ability to have generics on associated types, as so. Additionally, where clauses on associated types will now be accepted, regardless if the associated type is generic or not. ```rust trait ATraitWithGATs { type Assoc<'a, T> where T: 'a; } trait ATraitWithoutGATs<'a, T> { type Assoc where T: 'a; } ``` When adding an impl for a trait with generic associated types, the generics for the associated type are copied as well. Note that where clauses are allowed both after the specified type and before the equals sign; however, the latter is a warn-by-default deprecation. ```rust struct X; struct Y; impl ATraitWithGATs for X { type Assoc<'a, T> = &'a T where T: 'a; } impl ATraitWithGATs for Y { type Assoc<'a, T> where T: 'a = &'a T; } ``` To use a GAT in a function, generics are specified on the associated type, as if it was a struct or enum. GATs can also be specified in trait bounds: ```rust fn accepts_gat<'a, T>(t: &'a T) -> T::Assoc<'a, T> where for<'x> T: ATraitWithGATs<Assoc<'a, T> = &'a T> { ... } ``` GATs can also appear in trait methods. However, depending on how they are used, they may confer where clauses on the associated type definition. More information can be found [here](rust-lang/rust#87479). Briefly, where clauses are required when those bounds can be proven in the methods that *construct* the GAT or other associated types that use the GAT in the trait. This allows impls to have maximum flexibility in the types defined for the associated type. To take a relatively simple example: ```rust trait Iterable { type Item<'a>; type Iterator<'a>: Iterator<Item = Self::Item<'a>>; fn iter<'x>(&'x self) -> Self::Iterator<'x>; //^ We know that `Self: 'a` for `Iterator<'a>`, so we require that bound on `Iterator` // `Iterator` uses `Self::Item`, so we also require a `Self: 'a` on `Item` too } ``` A couple well-explained examples are available in a previous [blog post](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html). ## What isn't stabilized/implemented ### Universal type/const quantification Currently, you can write a bound like `X: for<'a> Trait<Assoc<'a> = &'a ()>`. However, you cannot currently write `for<T> X: Trait<Assoc<T> = T>` or `for<const N> X: Trait<Assoc<N> = [usize; N]>`. Here is an example where this is needed: ```rust trait Foo {} trait Trait { type Assoc<F: Foo>; } trait Trait2: Sized { fn foo<F: Foo, T: Trait<Assoc<F> = F>>(_t: T); } ``` In the above example, the *caller* must specify `F`, which is likely not what is desired. ### Object-safe GATs Unlike non-generic associated types, traits with GATs are not currently object-safe. In other words the following are not allowed: ```rust trait Trait { type Assoc<'a>; } fn foo(t: &dyn for<'a> Trait<Assoc<'a> = &'a ()>) {} //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed let ty: Box<dyn for<'a> Trait<Assoc<'a> = &'a ()>>; //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed ``` ### Higher-kinded types You cannot write currently (and there are no current plans to implement this): ```rust struct Struct<'a> {} fn foo(s: for<'a> Struct<'a>) {} ``` ## Tests There are many tests covering GATs that can be found in `src/test/ui/generic-associated-types`. Here, I'll list (in alphanumeric order) tests highlight some important behavior or contain important patterns. - `./parse/*`: Parsing of GATs in traits and impls, and the trait path with GATs - `./collections-project-default.rs`: Interaction with associated type defaults - `./collections.rs`: The `Collection` pattern - `./const-generics-gat-in-trait-return-type-*.rs`: Const parameters - `./constraint-assoc-type-suggestion.rs`: Emit correct syntax in suggestion - `./cross-crate-bounds.rs`: Ensure we handles bounds across crates the same - `./elided-in-expr-position.rs`: Disallow lifetime elision in return position - `./gat-in-trait-path-undeclared-lifetime.rs`: Ensure we error on undeclared lifetime in trait path - `./gat-in-trait-path.rs`: Base trait path case - `./gat-trait-path-generic-type-arg.rs`: Don't allow shadowing of parameters - `./gat-trait-path-parenthesised-args.rs`: Don't allow paranthesized args in trait path - `./generic-associated-types-where.rs`: Ensure that we require where clauses from trait to be met on impl - `./impl_bounds.rs`: Check that the bounds on GATs in an impl are checked - `./issue-76826.rs`: `Windows` pattern - `./issue-78113-lifetime-mismatch-dyn-trait-box.rs`: Implicit 'static diagnostics - `./issue-84931.rs`: Ensure that we have a where clause on GAT to ensure trait parameter lives long enough - `./issue-87258_a.rs`: Unconstrained opaque type with TAITs - `./issue-87429-2.rs`: Ensure we can use bound vars in the bounds - `./issue-87429-associated-type-default.rs`: Ensure bounds hold with associated type defaults, for both trait and impl - `./issue-87429-specialization.rs`: Check that bounds hold under specialization - `./issue-88595.rs`: Under the outlives lint, we require a bound for both trait and GAT lifetime when trait lifetime is used in function - `./issue-90014.rs`: Lifetime bounds are checked with TAITs - `./issue-91139.rs`: Under migrate mode, but not NLL, we don't capture implied bounds from HRTB lifetimes used in a function and GATs - `./issue-91762.rs`: We used to too eagerly pick param env candidates when normalizing with GATs. We now require explicit parameters specified. - `./issue-95305.rs`: Disallow lifetime elision in trait paths - `./iterable.rs`: `Iterable` pattern - `./method-unsatified-assoc-type-predicate.rs`: Print predicates with GATs correctly in method resolve error - `./missing_lifetime_const.rs`: Ensure we must specify lifetime args (not elidable) - `./missing-where-clause-on-trait.rs`: Ensure we don't allow stricter bounds on impl than trait - `./parameter_number_and_kind_impl.rs`: Ensure paramters on GAT in impl match GAT in trait - `./pointer_family.rs`: `PointerFamily` pattern - `./projection-bound-cycle.rs`: Don't allow invalid cycles to prove bounds - `./self-outlives-lint.rs`: Ensures that an e.g. `Self: 'a` is written on the traits GAT if that bound can be implied from the GAT usage in the trait - `./shadowing.rs`: Don't allow lifetime shadowing in params - `./streaming_iterator.rs`: `StreamingIterator`(`LendingIterator`) pattern - `./trait-objects.rs`: Disallow trait objects for traits with GATs - `./variance_constraints.rs`: Require that GAT substs be invariant ## Remaining bugs and open issues A full list of remaining open issues can be found at: https://github.com/rust-lang/rust/labels/F-generic_associated_types There are some `known-bug` tests in-tree at `src/test/ui/generic-associated-types/bugs`. Here I'll categorize most of those that GAT bugs (or involve a pattern found more with GATs), but not those that include GATs but not a GAT issue in and of itself. (I also won't include issues directly for things listed elsewhere here.) Using the concrete type of a GAT instead of the projection type can give errors, since lifetimes are chosen to be early-bound vs late-bound. - #85533 - #87803 In certain cases, we can run into cycle or overflow errors. This is more generally a problem with associated types. - #87755 - #87758 Bounds on an associatd type need to be proven by an impl, but where clauses need to be proven by the usage. This can lead to confusion when users write one when they mean the other. - #87831 - #90573 We sometimes can't normalize closure signatures fully. Really an asociated types issue, but might happen a bit more frequently with GATs, since more obvious place for HRTB lifetimes. - #88382 When calling a function, we assign types to parameters "too late", after we already try (and fail) to normalize projections. Another associated types issue that might pop up more with GATs. - #88460 - #96230 We don't fully have implied bounds for lifetimes appearing in GAT trait paths, which can lead to unconstrained type errors. - #88526 Suggestion for adding lifetime bounds can suggest unhelpful fixes (`T: 'a` instead of `Self: 'a`), but the next compiler error after making the suggested change is helpful. - #90816 - #92096 - #95268 We can end up requiring that `for<'a> I: 'a` when we really want `for<'a where I: 'a> I: 'a`. This can leave unhelpful errors than effectively can't be satisfied unless `I: 'static`. Requires bigger changes and not only GATs. - #91693 Unlike with non-generic associated types, we don't eagerly normalize with param env candidates. This is intended behavior (for now), to avoid accidentaly stabilizing picking arbitrary impls. - #91762 Some Iterator adapter patterns (namely `filter`) require Polonius or unsafe to work. - #92985 ## Potential Future work ### Universal type/const quantification No work has been done to implement this. There are also some questions around implied bounds. ### Object-safe GATs The intention is to make traits with GATs object-safe. There are some design work to be done around well-formedness rules and general implementation. ### GATified std lib types It would be helpful to either introduce new std lib traits (like `LendingIterator`) or to modify existing ones (adding a `'a` generic to `Iterator::Item`). There also a number of other candidates, like `Index`/`IndexMut` and `Fn`/`FnMut`/`FnOnce`. ### Reduce the need for `for<'a>` Seen [here](rust-lang/rfcs#1598 (comment)). One possible syntax: ```rust trait Iterable { type Iter<'a>: Iterator<Item = Self::Item<'a>>; } fn foo<T>() where T: Iterable, T::Item<let 'a>: Display { } //note the `let`! ``` ### Better implied bounds on higher-ranked things Currently if we have a `type Item<'a> where self: 'a`, and a `for<'a> T: Iterator<Item<'a> = &'a ()`, this requires `for<'a> Self: 'a`. Really, we want `for<'a where T: 'a> ...` There was some mentions of this all the back in the RFC thread [here](rust-lang/rfcs#1598 (comment)). ## Alternatives ### Make generics on associated type in bounds a binder Imagine the bound `for<'a> T: Trait<Item<'a>= &'a ()>`. It might be that `for<'a>` is "too large" and it should instead be `T: Trait<for<'a> Item<'a>= &'a ()>`. Brought up in RFC thread [here](rust-lang/rfcs#1598 (comment)) and in a few places since. Another related question: Is `for<'a>` the right syntax? Maybe `where<'a>`? Also originally found in RFC thread [here](rust-lang/rfcs#1598 (comment)). ### Stabilize lifetime GATs first This has been brought up a few times. The idea is to only allow GATs with lifetime parameters to in initial stabilization. This was probably most useful prior to actual implementation. At this point, lifetimes, types, and consts are all implemented and work. It feels like an arbitrary split without strong reason. ## History * On 2016-04-30, [RFC opened](rust-lang/rfcs#1598) * On 2017-09-02, RFC merged and [tracking issue opened](rust-lang/rust#44265) * On 2017-10-23, [Move Generics from MethodSig to TraitItem and ImplItem](rust-lang/rust#44766) * On 2017-12-01, [Generic Associated Types Parsing & Name Resolution](rust-lang/rust#45904) * On 2017-12-15, [https://github.com/rust-lang/rust/pull/46706](https://github.com/rust-lang/rust/pull/46706) * On 2018-04-23, [Feature gate where clauses on associated types](rust-lang/rust#49368) * On 2018-05-10, [Extend tests for RFC1598 (GAT)](rust-lang/rust#49423) * On 2018-05-24, [Finish implementing GATs (Chalk)](rust-lang/chalk#134) * On 2019-12-21, [Make GATs less ICE-prone](rust-lang/rust#67160) * On 2020-02-13, [fix lifetime shadowing check in GATs](rust-lang/rust#68938) * On 2020-06-20, [Projection bound validation](rust-lang/rust#72788) * On 2020-10-06, [Separate projection bounds and predicates](rust-lang/rust#73905) * On 2021-02-05, [Generic associated types in trait paths](rust-lang/rust#79554) * On 2021-02-06, [Trait objects do not work with generic associated types](rust-lang/rust#81823) * On 2021-04-28, [Make traits with GATs not object safe](rust-lang/rust#84622) * On 2021-05-11, [Improve diagnostics for GATs](rust-lang/rust#82272) * On 2021-07-16, [Make GATs no longer an incomplete feature](rust-lang/rust#84623) * On 2021-07-16, [Replace associated item bound vars with placeholders when projecting](rust-lang/rust#86993) * On 2021-07-26, [GATs: Decide whether to have defaults for `where Self: 'a`](rust-lang/rust#87479) * On 2021-08-25, [Normalize projections under binders](rust-lang/rust#85499) * On 2021-08-03, [The push for GATs stabilization](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html) * On 2021-08-12, [Detect stricter constraints on gats where clauses in impls vs trait](rust-lang/rust#88336) * On 2021-09-20, [Proposal: Change syntax of where clauses on type aliases](rust-lang/rust#89122) * On 2021-11-06, [Implementation of GATs outlives lint](rust-lang/rust#89970) * On 2021-12-29. [Parse and suggest moving where clauses after equals for type aliases](rust-lang/rust#92118) * On 2022-01-15, [Ignore static lifetimes for GATs outlives lint](rust-lang/rust#92865) * On 2022-02-08, [Don't constrain projection predicates with inference vars in GAT substs](rust-lang/rust#92917) * On 2022-02-15, [Rework GAT where clause check](rust-lang/rust#93820) * On 2022-02-19, [Only mark projection as ambiguous if GAT substs are constrained](rust-lang/rust#93892) * On 2022-03-03, [Support GATs in Rustdoc](rust-lang/rust#94009) * On 2022-03-06, [Change location of where clause on GATs](rust-lang/rust#90076) * On 2022-05-04, [A shiny future with GATs blog post](https://jackh726.github.io/rust/2022/05/04/a-shiny-future-with-gats.html) * On 2022-05-04, [Stabilization PR](rust-lang/rust#96709)
The MSRV (minimum supported Rust version) is the earliest version capable of building a project. In the case of the capnp crate, the MSRV is 1.65.0, due to the use of GATs. Having the MSRV in Cargo.toml helps display better error messages when the Rust version is too old to build a project. eg: > error: package `capnp v0.15.0 (/Users/maxime/Code/capnproto-rust/capnp)` > cannot be built because it requires rustc 1.65.0 or newer, while the > currently active rustc version is 1.64.0 Without it, the error messages are more confusing. > error[E0658]: generic associated types are unstable > --> capnp/src/traits.rs:73:5 > | > 73 | type Builder<'a>: FromStructBuilder<'a> + HasStructSize; > | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > | > = note: see issue #44265 <rust-lang/rust#44265> for more information Cargo.toml docs: https://doc.rust-lang.org/cargo/reference/manifest.html#the-rust-version-field
Stabilize generic associated types Closes #44265 r? `@nikomatsakis` # ⚡ Status of the discussion ⚡ * [x] There have been several serious concerns raised, [summarized here](rust-lang/rust#96709 (comment)). * [x] There has also been a [deep-dive comment](rust-lang/rust#96709 (comment)) explaining some of the "patterns of code" that are enabled by GATs, based on use-cases posted to this thread or on the tracking issue. * [x] We have modeled some aspects of GATs in [a-mir-formality](https://github.com/nikomatsakis/a-mir-formality) to give better confidence in how they will be resolved in the future. [You can read a write-up here](https://github.com/rust-lang/types-team/blob/master/minutes/2022-07-08-implied-bounds-and-wf-checking.md). * [x] The major points of the discussion have been [summarized on the GAT initiative repository](https://rust-lang.github.io/generic-associated-types-initiative/mvp.html). * [x] [FCP has been proposed](rust-lang/rust#96709 (comment)) and we are awaiting final decisions and discussion amidst the relevant team members. # Stabilization proposal This PR proposes the stabilization of `#![feature(generic_associated_types)]`. While there a number of future additions to be made and bugs to be fixed (both discussed below), properly doing these will require significant language design and will ultimately likely be backwards-compatible. Given the overwhelming desire to have some form of generic associated types (GATs) available on stable and the stability of the "simple" uses, stabilizing the current subset of GAT features is almost certainly the correct next step. Tracking issue: #44265 Initiative: https://rust-lang.github.io/generic-associated-types-initiative/ RFC: https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md Version: 1.65 (2022-08-22 => beta, 2022-11-03 => stable). ## Motivation There are a myriad of potential use cases for GATs. Stabilization unblocks probable future language features (e.g. async functions in traits), potential future standard library features (e.g. a `LendingIterator` or some form of `Iterator` with a lifetime generic), and a plethora of user use cases (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). There are a myriad of potential use cases for GATs. First, there are many users that have chosen to not use GATs primarily because they are not stable (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). Second, while language feature desugaring isn't *blocked* on stabilization, it gives more confidence on using the feature. Likewise, library features like `LendingIterator` are not necessarily blocked on stabilization to be implemented unstably; however few, if any, public-facing APIs actually use unstable features. This feature has a long history of design, discussion, and developement - the RFC was first introduced roughly 6 years ago. While there are still a number of features left to implement and bugs left to fix, it's clear that it's unlikely those will have backwards-incompatibility concerns. Additionally, the bugs that do exist do not strongly impede the most-common use cases. ## What is stabilized The primary language feature stabilized here is the ability to have generics on associated types, as so. Additionally, where clauses on associated types will now be accepted, regardless if the associated type is generic or not. ```rust trait ATraitWithGATs { type Assoc<'a, T> where T: 'a; } trait ATraitWithoutGATs<'a, T> { type Assoc where T: 'a; } ``` When adding an impl for a trait with generic associated types, the generics for the associated type are copied as well. Note that where clauses are allowed both after the specified type and before the equals sign; however, the latter is a warn-by-default deprecation. ```rust struct X; struct Y; impl ATraitWithGATs for X { type Assoc<'a, T> = &'a T where T: 'a; } impl ATraitWithGATs for Y { type Assoc<'a, T> where T: 'a = &'a T; } ``` To use a GAT in a function, generics are specified on the associated type, as if it was a struct or enum. GATs can also be specified in trait bounds: ```rust fn accepts_gat<'a, T>(t: &'a T) -> T::Assoc<'a, T> where for<'x> T: ATraitWithGATs<Assoc<'a, T> = &'a T> { ... } ``` GATs can also appear in trait methods. However, depending on how they are used, they may confer where clauses on the associated type definition. More information can be found [here](rust-lang/rust#87479). Briefly, where clauses are required when those bounds can be proven in the methods that *construct* the GAT or other associated types that use the GAT in the trait. This allows impls to have maximum flexibility in the types defined for the associated type. To take a relatively simple example: ```rust trait Iterable { type Item<'a>; type Iterator<'a>: Iterator<Item = Self::Item<'a>>; fn iter<'x>(&'x self) -> Self::Iterator<'x>; //^ We know that `Self: 'a` for `Iterator<'a>`, so we require that bound on `Iterator` // `Iterator` uses `Self::Item`, so we also require a `Self: 'a` on `Item` too } ``` A couple well-explained examples are available in a previous [blog post](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html). ## What isn't stabilized/implemented ### Universal type/const quantification Currently, you can write a bound like `X: for<'a> Trait<Assoc<'a> = &'a ()>`. However, you cannot currently write `for<T> X: Trait<Assoc<T> = T>` or `for<const N> X: Trait<Assoc<N> = [usize; N]>`. Here is an example where this is needed: ```rust trait Foo {} trait Trait { type Assoc<F: Foo>; } trait Trait2: Sized { fn foo<F: Foo, T: Trait<Assoc<F> = F>>(_t: T); } ``` In the above example, the *caller* must specify `F`, which is likely not what is desired. ### Object-safe GATs Unlike non-generic associated types, traits with GATs are not currently object-safe. In other words the following are not allowed: ```rust trait Trait { type Assoc<'a>; } fn foo(t: &dyn for<'a> Trait<Assoc<'a> = &'a ()>) {} //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed let ty: Box<dyn for<'a> Trait<Assoc<'a> = &'a ()>>; //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed ``` ### Higher-kinded types You cannot write currently (and there are no current plans to implement this): ```rust struct Struct<'a> {} fn foo(s: for<'a> Struct<'a>) {} ``` ## Tests There are many tests covering GATs that can be found in `src/test/ui/generic-associated-types`. Here, I'll list (in alphanumeric order) tests highlight some important behavior or contain important patterns. - `./parse/*`: Parsing of GATs in traits and impls, and the trait path with GATs - `./collections-project-default.rs`: Interaction with associated type defaults - `./collections.rs`: The `Collection` pattern - `./const-generics-gat-in-trait-return-type-*.rs`: Const parameters - `./constraint-assoc-type-suggestion.rs`: Emit correct syntax in suggestion - `./cross-crate-bounds.rs`: Ensure we handles bounds across crates the same - `./elided-in-expr-position.rs`: Disallow lifetime elision in return position - `./gat-in-trait-path-undeclared-lifetime.rs`: Ensure we error on undeclared lifetime in trait path - `./gat-in-trait-path.rs`: Base trait path case - `./gat-trait-path-generic-type-arg.rs`: Don't allow shadowing of parameters - `./gat-trait-path-parenthesised-args.rs`: Don't allow paranthesized args in trait path - `./generic-associated-types-where.rs`: Ensure that we require where clauses from trait to be met on impl - `./impl_bounds.rs`: Check that the bounds on GATs in an impl are checked - `./issue-76826.rs`: `Windows` pattern - `./issue-78113-lifetime-mismatch-dyn-trait-box.rs`: Implicit 'static diagnostics - `./issue-84931.rs`: Ensure that we have a where clause on GAT to ensure trait parameter lives long enough - `./issue-87258_a.rs`: Unconstrained opaque type with TAITs - `./issue-87429-2.rs`: Ensure we can use bound vars in the bounds - `./issue-87429-associated-type-default.rs`: Ensure bounds hold with associated type defaults, for both trait and impl - `./issue-87429-specialization.rs`: Check that bounds hold under specialization - `./issue-88595.rs`: Under the outlives lint, we require a bound for both trait and GAT lifetime when trait lifetime is used in function - `./issue-90014.rs`: Lifetime bounds are checked with TAITs - `./issue-91139.rs`: Under migrate mode, but not NLL, we don't capture implied bounds from HRTB lifetimes used in a function and GATs - `./issue-91762.rs`: We used to too eagerly pick param env candidates when normalizing with GATs. We now require explicit parameters specified. - `./issue-95305.rs`: Disallow lifetime elision in trait paths - `./iterable.rs`: `Iterable` pattern - `./method-unsatified-assoc-type-predicate.rs`: Print predicates with GATs correctly in method resolve error - `./missing_lifetime_const.rs`: Ensure we must specify lifetime args (not elidable) - `./missing-where-clause-on-trait.rs`: Ensure we don't allow stricter bounds on impl than trait - `./parameter_number_and_kind_impl.rs`: Ensure paramters on GAT in impl match GAT in trait - `./pointer_family.rs`: `PointerFamily` pattern - `./projection-bound-cycle.rs`: Don't allow invalid cycles to prove bounds - `./self-outlives-lint.rs`: Ensures that an e.g. `Self: 'a` is written on the traits GAT if that bound can be implied from the GAT usage in the trait - `./shadowing.rs`: Don't allow lifetime shadowing in params - `./streaming_iterator.rs`: `StreamingIterator`(`LendingIterator`) pattern - `./trait-objects.rs`: Disallow trait objects for traits with GATs - `./variance_constraints.rs`: Require that GAT substs be invariant ## Remaining bugs and open issues A full list of remaining open issues can be found at: https://github.com/rust-lang/rust/labels/F-generic_associated_types There are some `known-bug` tests in-tree at `src/test/ui/generic-associated-types/bugs`. Here I'll categorize most of those that GAT bugs (or involve a pattern found more with GATs), but not those that include GATs but not a GAT issue in and of itself. (I also won't include issues directly for things listed elsewhere here.) Using the concrete type of a GAT instead of the projection type can give errors, since lifetimes are chosen to be early-bound vs late-bound. - #85533 - #87803 In certain cases, we can run into cycle or overflow errors. This is more generally a problem with associated types. - #87755 - #87758 Bounds on an associatd type need to be proven by an impl, but where clauses need to be proven by the usage. This can lead to confusion when users write one when they mean the other. - #87831 - #90573 We sometimes can't normalize closure signatures fully. Really an asociated types issue, but might happen a bit more frequently with GATs, since more obvious place for HRTB lifetimes. - #88382 When calling a function, we assign types to parameters "too late", after we already try (and fail) to normalize projections. Another associated types issue that might pop up more with GATs. - #88460 - #96230 We don't fully have implied bounds for lifetimes appearing in GAT trait paths, which can lead to unconstrained type errors. - #88526 Suggestion for adding lifetime bounds can suggest unhelpful fixes (`T: 'a` instead of `Self: 'a`), but the next compiler error after making the suggested change is helpful. - #90816 - #92096 - #95268 We can end up requiring that `for<'a> I: 'a` when we really want `for<'a where I: 'a> I: 'a`. This can leave unhelpful errors than effectively can't be satisfied unless `I: 'static`. Requires bigger changes and not only GATs. - #91693 Unlike with non-generic associated types, we don't eagerly normalize with param env candidates. This is intended behavior (for now), to avoid accidentaly stabilizing picking arbitrary impls. - #91762 Some Iterator adapter patterns (namely `filter`) require Polonius or unsafe to work. - #92985 ## Potential Future work ### Universal type/const quantification No work has been done to implement this. There are also some questions around implied bounds. ### Object-safe GATs The intention is to make traits with GATs object-safe. There are some design work to be done around well-formedness rules and general implementation. ### GATified std lib types It would be helpful to either introduce new std lib traits (like `LendingIterator`) or to modify existing ones (adding a `'a` generic to `Iterator::Item`). There also a number of other candidates, like `Index`/`IndexMut` and `Fn`/`FnMut`/`FnOnce`. ### Reduce the need for `for<'a>` Seen [here](rust-lang/rfcs#1598 (comment)). One possible syntax: ```rust trait Iterable { type Iter<'a>: Iterator<Item = Self::Item<'a>>; } fn foo<T>() where T: Iterable, T::Item<let 'a>: Display { } //note the `let`! ``` ### Better implied bounds on higher-ranked things Currently if we have a `type Item<'a> where self: 'a`, and a `for<'a> T: Iterator<Item<'a> = &'a ()`, this requires `for<'a> Self: 'a`. Really, we want `for<'a where T: 'a> ...` There was some mentions of this all the back in the RFC thread [here](rust-lang/rfcs#1598 (comment)). ## Alternatives ### Make generics on associated type in bounds a binder Imagine the bound `for<'a> T: Trait<Item<'a>= &'a ()>`. It might be that `for<'a>` is "too large" and it should instead be `T: Trait<for<'a> Item<'a>= &'a ()>`. Brought up in RFC thread [here](rust-lang/rfcs#1598 (comment)) and in a few places since. Another related question: Is `for<'a>` the right syntax? Maybe `where<'a>`? Also originally found in RFC thread [here](rust-lang/rfcs#1598 (comment)). ### Stabilize lifetime GATs first This has been brought up a few times. The idea is to only allow GATs with lifetime parameters to in initial stabilization. This was probably most useful prior to actual implementation. At this point, lifetimes, types, and consts are all implemented and work. It feels like an arbitrary split without strong reason. ## History * On 2016-04-30, [RFC opened](rust-lang/rfcs#1598) * On 2017-09-02, RFC merged and [tracking issue opened](rust-lang/rust#44265) * On 2017-10-23, [Move Generics from MethodSig to TraitItem and ImplItem](rust-lang/rust#44766) * On 2017-12-01, [Generic Associated Types Parsing & Name Resolution](rust-lang/rust#45904) * On 2017-12-15, [https://github.com/rust-lang/rust/pull/46706](https://github.com/rust-lang/rust/pull/46706) * On 2018-04-23, [Feature gate where clauses on associated types](rust-lang/rust#49368) * On 2018-05-10, [Extend tests for RFC1598 (GAT)](rust-lang/rust#49423) * On 2018-05-24, [Finish implementing GATs (Chalk)](rust-lang/chalk#134) * On 2019-12-21, [Make GATs less ICE-prone](rust-lang/rust#67160) * On 2020-02-13, [fix lifetime shadowing check in GATs](rust-lang/rust#68938) * On 2020-06-20, [Projection bound validation](rust-lang/rust#72788) * On 2020-10-06, [Separate projection bounds and predicates](rust-lang/rust#73905) * On 2021-02-05, [Generic associated types in trait paths](rust-lang/rust#79554) * On 2021-02-06, [Trait objects do not work with generic associated types](rust-lang/rust#81823) * On 2021-04-28, [Make traits with GATs not object safe](rust-lang/rust#84622) * On 2021-05-11, [Improve diagnostics for GATs](rust-lang/rust#82272) * On 2021-07-16, [Make GATs no longer an incomplete feature](rust-lang/rust#84623) * On 2021-07-16, [Replace associated item bound vars with placeholders when projecting](rust-lang/rust#86993) * On 2021-07-26, [GATs: Decide whether to have defaults for `where Self: 'a`](rust-lang/rust#87479) * On 2021-08-25, [Normalize projections under binders](rust-lang/rust#85499) * On 2021-08-03, [The push for GATs stabilization](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html) * On 2021-08-12, [Detect stricter constraints on gats where clauses in impls vs trait](rust-lang/rust#88336) * On 2021-09-20, [Proposal: Change syntax of where clauses on type aliases](rust-lang/rust#89122) * On 2021-11-06, [Implementation of GATs outlives lint](rust-lang/rust#89970) * On 2021-12-29. [Parse and suggest moving where clauses after equals for type aliases](rust-lang/rust#92118) * On 2022-01-15, [Ignore static lifetimes for GATs outlives lint](rust-lang/rust#92865) * On 2022-02-08, [Don't constrain projection predicates with inference vars in GAT substs](rust-lang/rust#92917) * On 2022-02-15, [Rework GAT where clause check](rust-lang/rust#93820) * On 2022-02-19, [Only mark projection as ambiguous if GAT substs are constrained](rust-lang/rust#93892) * On 2022-03-03, [Support GATs in Rustdoc](rust-lang/rust#94009) * On 2022-03-06, [Change location of where clause on GATs](rust-lang/rust#90076) * On 2022-05-04, [A shiny future with GATs blog post](https://jackh726.github.io/rust/2022/05/04/a-shiny-future-with-gats.html) * On 2022-05-04, [Stabilization PR](rust-lang/rust#96709)
This comment was marked as off-topic.
This comment was marked as off-topic.
This comment was marked as off-topic.
This comment was marked as off-topic.
This comment was marked as off-topic.
This comment was marked as off-topic.
This comment was marked as off-topic.
This comment was marked as off-topic.
Stabilize generic associated types Closes #44265 r? `@nikomatsakis` # ⚡ Status of the discussion ⚡ * [x] There have been several serious concerns raised, [summarized here](rust-lang/rust#96709 (comment)). * [x] There has also been a [deep-dive comment](rust-lang/rust#96709 (comment)) explaining some of the "patterns of code" that are enabled by GATs, based on use-cases posted to this thread or on the tracking issue. * [x] We have modeled some aspects of GATs in [a-mir-formality](https://github.com/nikomatsakis/a-mir-formality) to give better confidence in how they will be resolved in the future. [You can read a write-up here](https://github.com/rust-lang/types-team/blob/master/minutes/2022-07-08-implied-bounds-and-wf-checking.md). * [x] The major points of the discussion have been [summarized on the GAT initiative repository](https://rust-lang.github.io/generic-associated-types-initiative/mvp.html). * [x] [FCP has been proposed](rust-lang/rust#96709 (comment)) and we are awaiting final decisions and discussion amidst the relevant team members. # Stabilization proposal This PR proposes the stabilization of `#![feature(generic_associated_types)]`. While there a number of future additions to be made and bugs to be fixed (both discussed below), properly doing these will require significant language design and will ultimately likely be backwards-compatible. Given the overwhelming desire to have some form of generic associated types (GATs) available on stable and the stability of the "simple" uses, stabilizing the current subset of GAT features is almost certainly the correct next step. Tracking issue: #44265 Initiative: https://rust-lang.github.io/generic-associated-types-initiative/ RFC: https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md Version: 1.65 (2022-08-22 => beta, 2022-11-03 => stable). ## Motivation There are a myriad of potential use cases for GATs. Stabilization unblocks probable future language features (e.g. async functions in traits), potential future standard library features (e.g. a `LendingIterator` or some form of `Iterator` with a lifetime generic), and a plethora of user use cases (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). There are a myriad of potential use cases for GATs. First, there are many users that have chosen to not use GATs primarily because they are not stable (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). Second, while language feature desugaring isn't *blocked* on stabilization, it gives more confidence on using the feature. Likewise, library features like `LendingIterator` are not necessarily blocked on stabilization to be implemented unstably; however few, if any, public-facing APIs actually use unstable features. This feature has a long history of design, discussion, and developement - the RFC was first introduced roughly 6 years ago. While there are still a number of features left to implement and bugs left to fix, it's clear that it's unlikely those will have backwards-incompatibility concerns. Additionally, the bugs that do exist do not strongly impede the most-common use cases. ## What is stabilized The primary language feature stabilized here is the ability to have generics on associated types, as so. Additionally, where clauses on associated types will now be accepted, regardless if the associated type is generic or not. ```rust trait ATraitWithGATs { type Assoc<'a, T> where T: 'a; } trait ATraitWithoutGATs<'a, T> { type Assoc where T: 'a; } ``` When adding an impl for a trait with generic associated types, the generics for the associated type are copied as well. Note that where clauses are allowed both after the specified type and before the equals sign; however, the latter is a warn-by-default deprecation. ```rust struct X; struct Y; impl ATraitWithGATs for X { type Assoc<'a, T> = &'a T where T: 'a; } impl ATraitWithGATs for Y { type Assoc<'a, T> where T: 'a = &'a T; } ``` To use a GAT in a function, generics are specified on the associated type, as if it was a struct or enum. GATs can also be specified in trait bounds: ```rust fn accepts_gat<'a, T>(t: &'a T) -> T::Assoc<'a, T> where for<'x> T: ATraitWithGATs<Assoc<'a, T> = &'a T> { ... } ``` GATs can also appear in trait methods. However, depending on how they are used, they may confer where clauses on the associated type definition. More information can be found [here](rust-lang/rust#87479). Briefly, where clauses are required when those bounds can be proven in the methods that *construct* the GAT or other associated types that use the GAT in the trait. This allows impls to have maximum flexibility in the types defined for the associated type. To take a relatively simple example: ```rust trait Iterable { type Item<'a>; type Iterator<'a>: Iterator<Item = Self::Item<'a>>; fn iter<'x>(&'x self) -> Self::Iterator<'x>; //^ We know that `Self: 'a` for `Iterator<'a>`, so we require that bound on `Iterator` // `Iterator` uses `Self::Item`, so we also require a `Self: 'a` on `Item` too } ``` A couple well-explained examples are available in a previous [blog post](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html). ## What isn't stabilized/implemented ### Universal type/const quantification Currently, you can write a bound like `X: for<'a> Trait<Assoc<'a> = &'a ()>`. However, you cannot currently write `for<T> X: Trait<Assoc<T> = T>` or `for<const N> X: Trait<Assoc<N> = [usize; N]>`. Here is an example where this is needed: ```rust trait Foo {} trait Trait { type Assoc<F: Foo>; } trait Trait2: Sized { fn foo<F: Foo, T: Trait<Assoc<F> = F>>(_t: T); } ``` In the above example, the *caller* must specify `F`, which is likely not what is desired. ### Object-safe GATs Unlike non-generic associated types, traits with GATs are not currently object-safe. In other words the following are not allowed: ```rust trait Trait { type Assoc<'a>; } fn foo(t: &dyn for<'a> Trait<Assoc<'a> = &'a ()>) {} //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed let ty: Box<dyn for<'a> Trait<Assoc<'a> = &'a ()>>; //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed ``` ### Higher-kinded types You cannot write currently (and there are no current plans to implement this): ```rust struct Struct<'a> {} fn foo(s: for<'a> Struct<'a>) {} ``` ## Tests There are many tests covering GATs that can be found in `src/test/ui/generic-associated-types`. Here, I'll list (in alphanumeric order) tests highlight some important behavior or contain important patterns. - `./parse/*`: Parsing of GATs in traits and impls, and the trait path with GATs - `./collections-project-default.rs`: Interaction with associated type defaults - `./collections.rs`: The `Collection` pattern - `./const-generics-gat-in-trait-return-type-*.rs`: Const parameters - `./constraint-assoc-type-suggestion.rs`: Emit correct syntax in suggestion - `./cross-crate-bounds.rs`: Ensure we handles bounds across crates the same - `./elided-in-expr-position.rs`: Disallow lifetime elision in return position - `./gat-in-trait-path-undeclared-lifetime.rs`: Ensure we error on undeclared lifetime in trait path - `./gat-in-trait-path.rs`: Base trait path case - `./gat-trait-path-generic-type-arg.rs`: Don't allow shadowing of parameters - `./gat-trait-path-parenthesised-args.rs`: Don't allow paranthesized args in trait path - `./generic-associated-types-where.rs`: Ensure that we require where clauses from trait to be met on impl - `./impl_bounds.rs`: Check that the bounds on GATs in an impl are checked - `./issue-76826.rs`: `Windows` pattern - `./issue-78113-lifetime-mismatch-dyn-trait-box.rs`: Implicit 'static diagnostics - `./issue-84931.rs`: Ensure that we have a where clause on GAT to ensure trait parameter lives long enough - `./issue-87258_a.rs`: Unconstrained opaque type with TAITs - `./issue-87429-2.rs`: Ensure we can use bound vars in the bounds - `./issue-87429-associated-type-default.rs`: Ensure bounds hold with associated type defaults, for both trait and impl - `./issue-87429-specialization.rs`: Check that bounds hold under specialization - `./issue-88595.rs`: Under the outlives lint, we require a bound for both trait and GAT lifetime when trait lifetime is used in function - `./issue-90014.rs`: Lifetime bounds are checked with TAITs - `./issue-91139.rs`: Under migrate mode, but not NLL, we don't capture implied bounds from HRTB lifetimes used in a function and GATs - `./issue-91762.rs`: We used to too eagerly pick param env candidates when normalizing with GATs. We now require explicit parameters specified. - `./issue-95305.rs`: Disallow lifetime elision in trait paths - `./iterable.rs`: `Iterable` pattern - `./method-unsatified-assoc-type-predicate.rs`: Print predicates with GATs correctly in method resolve error - `./missing_lifetime_const.rs`: Ensure we must specify lifetime args (not elidable) - `./missing-where-clause-on-trait.rs`: Ensure we don't allow stricter bounds on impl than trait - `./parameter_number_and_kind_impl.rs`: Ensure paramters on GAT in impl match GAT in trait - `./pointer_family.rs`: `PointerFamily` pattern - `./projection-bound-cycle.rs`: Don't allow invalid cycles to prove bounds - `./self-outlives-lint.rs`: Ensures that an e.g. `Self: 'a` is written on the traits GAT if that bound can be implied from the GAT usage in the trait - `./shadowing.rs`: Don't allow lifetime shadowing in params - `./streaming_iterator.rs`: `StreamingIterator`(`LendingIterator`) pattern - `./trait-objects.rs`: Disallow trait objects for traits with GATs - `./variance_constraints.rs`: Require that GAT substs be invariant ## Remaining bugs and open issues A full list of remaining open issues can be found at: https://github.com/rust-lang/rust/labels/F-generic_associated_types There are some `known-bug` tests in-tree at `src/test/ui/generic-associated-types/bugs`. Here I'll categorize most of those that GAT bugs (or involve a pattern found more with GATs), but not those that include GATs but not a GAT issue in and of itself. (I also won't include issues directly for things listed elsewhere here.) Using the concrete type of a GAT instead of the projection type can give errors, since lifetimes are chosen to be early-bound vs late-bound. - #85533 - #87803 In certain cases, we can run into cycle or overflow errors. This is more generally a problem with associated types. - #87755 - #87758 Bounds on an associatd type need to be proven by an impl, but where clauses need to be proven by the usage. This can lead to confusion when users write one when they mean the other. - #87831 - #90573 We sometimes can't normalize closure signatures fully. Really an asociated types issue, but might happen a bit more frequently with GATs, since more obvious place for HRTB lifetimes. - #88382 When calling a function, we assign types to parameters "too late", after we already try (and fail) to normalize projections. Another associated types issue that might pop up more with GATs. - #88460 - #96230 We don't fully have implied bounds for lifetimes appearing in GAT trait paths, which can lead to unconstrained type errors. - #88526 Suggestion for adding lifetime bounds can suggest unhelpful fixes (`T: 'a` instead of `Self: 'a`), but the next compiler error after making the suggested change is helpful. - #90816 - #92096 - #95268 We can end up requiring that `for<'a> I: 'a` when we really want `for<'a where I: 'a> I: 'a`. This can leave unhelpful errors than effectively can't be satisfied unless `I: 'static`. Requires bigger changes and not only GATs. - #91693 Unlike with non-generic associated types, we don't eagerly normalize with param env candidates. This is intended behavior (for now), to avoid accidentaly stabilizing picking arbitrary impls. - #91762 Some Iterator adapter patterns (namely `filter`) require Polonius or unsafe to work. - #92985 ## Potential Future work ### Universal type/const quantification No work has been done to implement this. There are also some questions around implied bounds. ### Object-safe GATs The intention is to make traits with GATs object-safe. There are some design work to be done around well-formedness rules and general implementation. ### GATified std lib types It would be helpful to either introduce new std lib traits (like `LendingIterator`) or to modify existing ones (adding a `'a` generic to `Iterator::Item`). There also a number of other candidates, like `Index`/`IndexMut` and `Fn`/`FnMut`/`FnOnce`. ### Reduce the need for `for<'a>` Seen [here](rust-lang/rfcs#1598 (comment)). One possible syntax: ```rust trait Iterable { type Iter<'a>: Iterator<Item = Self::Item<'a>>; } fn foo<T>() where T: Iterable, T::Item<let 'a>: Display { } //note the `let`! ``` ### Better implied bounds on higher-ranked things Currently if we have a `type Item<'a> where self: 'a`, and a `for<'a> T: Iterator<Item<'a> = &'a ()`, this requires `for<'a> Self: 'a`. Really, we want `for<'a where T: 'a> ...` There was some mentions of this all the back in the RFC thread [here](rust-lang/rfcs#1598 (comment)). ## Alternatives ### Make generics on associated type in bounds a binder Imagine the bound `for<'a> T: Trait<Item<'a>= &'a ()>`. It might be that `for<'a>` is "too large" and it should instead be `T: Trait<for<'a> Item<'a>= &'a ()>`. Brought up in RFC thread [here](rust-lang/rfcs#1598 (comment)) and in a few places since. Another related question: Is `for<'a>` the right syntax? Maybe `where<'a>`? Also originally found in RFC thread [here](rust-lang/rfcs#1598 (comment)). ### Stabilize lifetime GATs first This has been brought up a few times. The idea is to only allow GATs with lifetime parameters to in initial stabilization. This was probably most useful prior to actual implementation. At this point, lifetimes, types, and consts are all implemented and work. It feels like an arbitrary split without strong reason. ## History * On 2016-04-30, [RFC opened](rust-lang/rfcs#1598) * On 2017-09-02, RFC merged and [tracking issue opened](rust-lang/rust#44265) * On 2017-10-23, [Move Generics from MethodSig to TraitItem and ImplItem](rust-lang/rust#44766) * On 2017-12-01, [Generic Associated Types Parsing & Name Resolution](rust-lang/rust#45904) * On 2017-12-15, [https://github.com/rust-lang/rust/pull/46706](https://github.com/rust-lang/rust/pull/46706) * On 2018-04-23, [Feature gate where clauses on associated types](rust-lang/rust#49368) * On 2018-05-10, [Extend tests for RFC1598 (GAT)](rust-lang/rust#49423) * On 2018-05-24, [Finish implementing GATs (Chalk)](rust-lang/chalk#134) * On 2019-12-21, [Make GATs less ICE-prone](rust-lang/rust#67160) * On 2020-02-13, [fix lifetime shadowing check in GATs](rust-lang/rust#68938) * On 2020-06-20, [Projection bound validation](rust-lang/rust#72788) * On 2020-10-06, [Separate projection bounds and predicates](rust-lang/rust#73905) * On 2021-02-05, [Generic associated types in trait paths](rust-lang/rust#79554) * On 2021-02-06, [Trait objects do not work with generic associated types](rust-lang/rust#81823) * On 2021-04-28, [Make traits with GATs not object safe](rust-lang/rust#84622) * On 2021-05-11, [Improve diagnostics for GATs](rust-lang/rust#82272) * On 2021-07-16, [Make GATs no longer an incomplete feature](rust-lang/rust#84623) * On 2021-07-16, [Replace associated item bound vars with placeholders when projecting](rust-lang/rust#86993) * On 2021-07-26, [GATs: Decide whether to have defaults for `where Self: 'a`](rust-lang/rust#87479) * On 2021-08-25, [Normalize projections under binders](rust-lang/rust#85499) * On 2021-08-03, [The push for GATs stabilization](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html) * On 2021-08-12, [Detect stricter constraints on gats where clauses in impls vs trait](rust-lang/rust#88336) * On 2021-09-20, [Proposal: Change syntax of where clauses on type aliases](rust-lang/rust#89122) * On 2021-11-06, [Implementation of GATs outlives lint](rust-lang/rust#89970) * On 2021-12-29. [Parse and suggest moving where clauses after equals for type aliases](rust-lang/rust#92118) * On 2022-01-15, [Ignore static lifetimes for GATs outlives lint](rust-lang/rust#92865) * On 2022-02-08, [Don't constrain projection predicates with inference vars in GAT substs](rust-lang/rust#92917) * On 2022-02-15, [Rework GAT where clause check](rust-lang/rust#93820) * On 2022-02-19, [Only mark projection as ambiguous if GAT substs are constrained](rust-lang/rust#93892) * On 2022-03-03, [Support GATs in Rustdoc](rust-lang/rust#94009) * On 2022-03-06, [Change location of where clause on GATs](rust-lang/rust#90076) * On 2022-05-04, [A shiny future with GATs blog post](https://jackh726.github.io/rust/2022/05/04/a-shiny-future-with-gats.html) * On 2022-05-04, [Stabilization PR](rust-lang/rust#96709)
This is a tracking issue for generic associated types (rust-lang/rfcs#1598)
Repository
Unresolved questions:
where Self: 'a
#87479 -- defaults forwhere Self: 'a
Blocking bugs
See also the
GATs-blocking
tag (the list below should be a superset of that, but its good to double-check).Associated type projections don't play well with HRTBs and normalization #30472No longer blockingUnimplemented
selecting `Binder #68644Enum variant with GAT field fails to derive Sized #80626Not GATs specific, not blockingGATs
emit an error but function correctlyish #99205Postponed work
The text was updated successfully, but these errors were encountered: