|
| 1 | +use super::sealed::Sealed; |
| 2 | +use crate::simd::{ |
| 3 | + intrinsics, LaneCount, Mask, Simd, SimdElement, SimdPartialEq, SimdPartialOrd, |
| 4 | + SupportedLaneCount, |
| 5 | +}; |
| 6 | + |
| 7 | +/// Operations on SIMD vectors of floats. |
| 8 | +pub trait SimdFloat: Copy + Sealed { |
| 9 | + /// Mask type used for manipulating this SIMD vector type. |
| 10 | + type Mask; |
| 11 | + |
| 12 | + /// Scalar type contained by this SIMD vector type. |
| 13 | + type Scalar; |
| 14 | + |
| 15 | + /// Bit representation of this SIMD vector type. |
| 16 | + type Bits; |
| 17 | + |
| 18 | + /// Raw transmutation to an unsigned integer vector type with the |
| 19 | + /// same size and number of lanes. |
| 20 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 21 | + fn to_bits(self) -> Self::Bits; |
| 22 | + |
| 23 | + /// Raw transmutation from an unsigned integer vector type with the |
| 24 | + /// same size and number of lanes. |
| 25 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 26 | + fn from_bits(bits: Self::Bits) -> Self; |
| 27 | + |
| 28 | + /// Produces a vector where every lane has the absolute value of the |
| 29 | + /// equivalently-indexed lane in `self`. |
| 30 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 31 | + fn abs(self) -> Self; |
| 32 | + |
| 33 | + /// Takes the reciprocal (inverse) of each lane, `1/x`. |
| 34 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 35 | + fn recip(self) -> Self; |
| 36 | + |
| 37 | + /// Converts each lane from radians to degrees. |
| 38 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 39 | + fn to_degrees(self) -> Self; |
| 40 | + |
| 41 | + /// Converts each lane from degrees to radians. |
| 42 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 43 | + fn to_radians(self) -> Self; |
| 44 | + |
| 45 | + /// Returns true for each lane if it has a positive sign, including |
| 46 | + /// `+0.0`, `NaN`s with positive sign bit and positive infinity. |
| 47 | + #[must_use = "method returns a new mask and does not mutate the original value"] |
| 48 | + fn is_sign_positive(self) -> Self::Mask; |
| 49 | + |
| 50 | + /// Returns true for each lane if it has a negative sign, including |
| 51 | + /// `-0.0`, `NaN`s with negative sign bit and negative infinity. |
| 52 | + #[must_use = "method returns a new mask and does not mutate the original value"] |
| 53 | + fn is_sign_negative(self) -> Self::Mask; |
| 54 | + |
| 55 | + /// Returns true for each lane if its value is `NaN`. |
| 56 | + #[must_use = "method returns a new mask and does not mutate the original value"] |
| 57 | + fn is_nan(self) -> Self::Mask; |
| 58 | + |
| 59 | + /// Returns true for each lane if its value is positive infinity or negative infinity. |
| 60 | + #[must_use = "method returns a new mask and does not mutate the original value"] |
| 61 | + fn is_infinite(self) -> Self::Mask; |
| 62 | + |
| 63 | + /// Returns true for each lane if its value is neither infinite nor `NaN`. |
| 64 | + #[must_use = "method returns a new mask and does not mutate the original value"] |
| 65 | + fn is_finite(self) -> Self::Mask; |
| 66 | + |
| 67 | + /// Returns true for each lane if its value is subnormal. |
| 68 | + #[must_use = "method returns a new mask and does not mutate the original value"] |
| 69 | + fn is_subnormal(self) -> Self::Mask; |
| 70 | + |
| 71 | + /// Returns true for each lane if its value is neither zero, infinite, |
| 72 | + /// subnormal, nor `NaN`. |
| 73 | + #[must_use = "method returns a new mask and does not mutate the original value"] |
| 74 | + fn is_normal(self) -> Self::Mask; |
| 75 | + |
| 76 | + /// Replaces each lane with a number that represents its sign. |
| 77 | + /// |
| 78 | + /// * `1.0` if the number is positive, `+0.0`, or `INFINITY` |
| 79 | + /// * `-1.0` if the number is negative, `-0.0`, or `NEG_INFINITY` |
| 80 | + /// * `NAN` if the number is `NAN` |
| 81 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 82 | + fn signum(self) -> Self; |
| 83 | + |
| 84 | + /// Returns each lane with the magnitude of `self` and the sign of `sign`. |
| 85 | + /// |
| 86 | + /// For any lane containing a `NAN`, a `NAN` with the sign of `sign` is returned. |
| 87 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 88 | + fn copysign(self, sign: Self) -> Self; |
| 89 | + |
| 90 | + /// Returns the minimum of each lane. |
| 91 | + /// |
| 92 | + /// If one of the values is `NAN`, then the other value is returned. |
| 93 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 94 | + fn simd_min(self, other: Self) -> Self; |
| 95 | + |
| 96 | + /// Returns the maximum of each lane. |
| 97 | + /// |
| 98 | + /// If one of the values is `NAN`, then the other value is returned. |
| 99 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 100 | + fn simd_max(self, other: Self) -> Self; |
| 101 | + |
| 102 | + /// Restrict each lane to a certain interval unless it is NaN. |
| 103 | + /// |
| 104 | + /// For each lane in `self`, returns the corresponding lane in `max` if the lane is |
| 105 | + /// greater than `max`, and the corresponding lane in `min` if the lane is less |
| 106 | + /// than `min`. Otherwise returns the lane in `self`. |
| 107 | + #[must_use = "method returns a new vector and does not mutate the original value"] |
| 108 | + fn simd_clamp(self, min: Self, max: Self) -> Self; |
| 109 | + |
| 110 | + /// Returns the sum of the lanes of the vector. |
| 111 | + /// |
| 112 | + /// # Examples |
| 113 | + /// |
| 114 | + /// ``` |
| 115 | + /// # #![feature(portable_simd)] |
| 116 | + /// # use core::simd::f32x2; |
| 117 | + /// let v = f32x2::from_array([1., 2.]); |
| 118 | + /// assert_eq!(v.reduce_sum(), 3.); |
| 119 | + /// ``` |
| 120 | + fn reduce_sum(self) -> Self::Scalar; |
| 121 | + |
| 122 | + /// Reducing multiply. Returns the product of the lanes of the vector. |
| 123 | + /// |
| 124 | + /// # Examples |
| 125 | + /// |
| 126 | + /// ``` |
| 127 | + /// # #![feature(portable_simd)] |
| 128 | + /// # use core::simd::f32x2; |
| 129 | + /// let v = f32x2::from_array([3., 4.]); |
| 130 | + /// assert_eq!(v.reduce_product(), 12.); |
| 131 | + /// ``` |
| 132 | + fn reduce_product(self) -> Self::Scalar; |
| 133 | + |
| 134 | + /// Returns the maximum lane in the vector. |
| 135 | + /// |
| 136 | + /// Returns values based on equality, so a vector containing both `0.` and `-0.` may |
| 137 | + /// return either. |
| 138 | + /// |
| 139 | + /// This function will not return `NaN` unless all lanes are `NaN`. |
| 140 | + /// |
| 141 | + /// # Examples |
| 142 | + /// |
| 143 | + /// ``` |
| 144 | + /// # #![feature(portable_simd)] |
| 145 | + /// # use core::simd::f32x2; |
| 146 | + /// let v = f32x2::from_array([1., 2.]); |
| 147 | + /// assert_eq!(v.reduce_max(), 2.); |
| 148 | + /// |
| 149 | + /// // NaN values are skipped... |
| 150 | + /// let v = f32x2::from_array([1., f32::NAN]); |
| 151 | + /// assert_eq!(v.reduce_max(), 1.); |
| 152 | + /// |
| 153 | + /// // ...unless all values are NaN |
| 154 | + /// let v = f32x2::from_array([f32::NAN, f32::NAN]); |
| 155 | + /// assert!(v.reduce_max().is_nan()); |
| 156 | + /// ``` |
| 157 | + fn reduce_max(self) -> Self::Scalar; |
| 158 | + |
| 159 | + /// Returns the minimum lane in the vector. |
| 160 | + /// |
| 161 | + /// Returns values based on equality, so a vector containing both `0.` and `-0.` may |
| 162 | + /// return either. |
| 163 | + /// |
| 164 | + /// This function will not return `NaN` unless all lanes are `NaN`. |
| 165 | + /// |
| 166 | + /// # Examples |
| 167 | + /// |
| 168 | + /// ``` |
| 169 | + /// # #![feature(portable_simd)] |
| 170 | + /// # use core::simd::f32x2; |
| 171 | + /// let v = f32x2::from_array([3., 7.]); |
| 172 | + /// assert_eq!(v.reduce_min(), 3.); |
| 173 | + /// |
| 174 | + /// // NaN values are skipped... |
| 175 | + /// let v = f32x2::from_array([1., f32::NAN]); |
| 176 | + /// assert_eq!(v.reduce_min(), 1.); |
| 177 | + /// |
| 178 | + /// // ...unless all values are NaN |
| 179 | + /// let v = f32x2::from_array([f32::NAN, f32::NAN]); |
| 180 | + /// assert!(v.reduce_min().is_nan()); |
| 181 | + /// ``` |
| 182 | + fn reduce_min(self) -> Self::Scalar; |
| 183 | +} |
| 184 | + |
| 185 | +macro_rules! impl_trait { |
| 186 | + { $($ty:ty { bits: $bits_ty:ty, mask: $mask_ty:ty }),* } => { |
| 187 | + $( |
| 188 | + impl<const LANES: usize> Sealed for Simd<$ty, LANES> |
| 189 | + where |
| 190 | + LaneCount<LANES>: SupportedLaneCount, |
| 191 | + { |
| 192 | + } |
| 193 | + |
| 194 | + impl<const LANES: usize> SimdFloat for Simd<$ty, LANES> |
| 195 | + where |
| 196 | + LaneCount<LANES>: SupportedLaneCount, |
| 197 | + { |
| 198 | + type Mask = Mask<<$mask_ty as SimdElement>::Mask, LANES>; |
| 199 | + type Scalar = $ty; |
| 200 | + type Bits = Simd<$bits_ty, LANES>; |
| 201 | + |
| 202 | + #[inline] |
| 203 | + fn to_bits(self) -> Simd<$bits_ty, LANES> { |
| 204 | + assert_eq!(core::mem::size_of::<Self>(), core::mem::size_of::<Self::Bits>()); |
| 205 | + unsafe { core::mem::transmute_copy(&self) } |
| 206 | + } |
| 207 | + |
| 208 | + #[inline] |
| 209 | + fn from_bits(bits: Simd<$bits_ty, LANES>) -> Self { |
| 210 | + assert_eq!(core::mem::size_of::<Self>(), core::mem::size_of::<Self::Bits>()); |
| 211 | + unsafe { core::mem::transmute_copy(&bits) } |
| 212 | + } |
| 213 | + |
| 214 | + #[inline] |
| 215 | + fn abs(self) -> Self { |
| 216 | + unsafe { intrinsics::simd_fabs(self) } |
| 217 | + } |
| 218 | + |
| 219 | + #[inline] |
| 220 | + fn recip(self) -> Self { |
| 221 | + Self::splat(1.0) / self |
| 222 | + } |
| 223 | + |
| 224 | + #[inline] |
| 225 | + fn to_degrees(self) -> Self { |
| 226 | + // to_degrees uses a special constant for better precision, so extract that constant |
| 227 | + self * Self::splat(Self::Scalar::to_degrees(1.)) |
| 228 | + } |
| 229 | + |
| 230 | + #[inline] |
| 231 | + fn to_radians(self) -> Self { |
| 232 | + self * Self::splat(Self::Scalar::to_radians(1.)) |
| 233 | + } |
| 234 | + |
| 235 | + #[inline] |
| 236 | + fn is_sign_positive(self) -> Self::Mask { |
| 237 | + !self.is_sign_negative() |
| 238 | + } |
| 239 | + |
| 240 | + #[inline] |
| 241 | + fn is_sign_negative(self) -> Self::Mask { |
| 242 | + let sign_bits = self.to_bits() & Simd::splat((!0 >> 1) + 1); |
| 243 | + sign_bits.simd_gt(Simd::splat(0)) |
| 244 | + } |
| 245 | + |
| 246 | + #[inline] |
| 247 | + fn is_nan(self) -> Self::Mask { |
| 248 | + self.simd_ne(self) |
| 249 | + } |
| 250 | + |
| 251 | + #[inline] |
| 252 | + fn is_infinite(self) -> Self::Mask { |
| 253 | + self.abs().simd_eq(Self::splat(Self::Scalar::INFINITY)) |
| 254 | + } |
| 255 | + |
| 256 | + #[inline] |
| 257 | + fn is_finite(self) -> Self::Mask { |
| 258 | + self.abs().simd_lt(Self::splat(Self::Scalar::INFINITY)) |
| 259 | + } |
| 260 | + |
| 261 | + #[inline] |
| 262 | + fn is_subnormal(self) -> Self::Mask { |
| 263 | + self.abs().simd_ne(Self::splat(0.0)) & (self.to_bits() & Self::splat(Self::Scalar::INFINITY).to_bits()).simd_eq(Simd::splat(0)) |
| 264 | + } |
| 265 | + |
| 266 | + #[inline] |
| 267 | + #[must_use = "method returns a new mask and does not mutate the original value"] |
| 268 | + fn is_normal(self) -> Self::Mask { |
| 269 | + !(self.abs().simd_eq(Self::splat(0.0)) | self.is_nan() | self.is_subnormal() | self.is_infinite()) |
| 270 | + } |
| 271 | + |
| 272 | + #[inline] |
| 273 | + fn signum(self) -> Self { |
| 274 | + self.is_nan().select(Self::splat(Self::Scalar::NAN), Self::splat(1.0).copysign(self)) |
| 275 | + } |
| 276 | + |
| 277 | + #[inline] |
| 278 | + fn copysign(self, sign: Self) -> Self { |
| 279 | + let sign_bit = sign.to_bits() & Self::splat(-0.).to_bits(); |
| 280 | + let magnitude = self.to_bits() & !Self::splat(-0.).to_bits(); |
| 281 | + Self::from_bits(sign_bit | magnitude) |
| 282 | + } |
| 283 | + |
| 284 | + #[inline] |
| 285 | + fn simd_min(self, other: Self) -> Self { |
| 286 | + unsafe { intrinsics::simd_fmin(self, other) } |
| 287 | + } |
| 288 | + |
| 289 | + #[inline] |
| 290 | + fn simd_max(self, other: Self) -> Self { |
| 291 | + unsafe { intrinsics::simd_fmax(self, other) } |
| 292 | + } |
| 293 | + |
| 294 | + #[inline] |
| 295 | + fn simd_clamp(self, min: Self, max: Self) -> Self { |
| 296 | + assert!( |
| 297 | + min.simd_le(max).all(), |
| 298 | + "each lane in `min` must be less than or equal to the corresponding lane in `max`", |
| 299 | + ); |
| 300 | + let mut x = self; |
| 301 | + x = x.simd_lt(min).select(min, x); |
| 302 | + x = x.simd_gt(max).select(max, x); |
| 303 | + x |
| 304 | + } |
| 305 | + |
| 306 | + #[inline] |
| 307 | + fn reduce_sum(self) -> Self::Scalar { |
| 308 | + // LLVM sum is inaccurate on i586 |
| 309 | + if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) { |
| 310 | + self.as_array().iter().sum() |
| 311 | + } else { |
| 312 | + // Safety: `self` is a float vector |
| 313 | + unsafe { intrinsics::simd_reduce_add_ordered(self, 0.) } |
| 314 | + } |
| 315 | + } |
| 316 | + |
| 317 | + #[inline] |
| 318 | + fn reduce_product(self) -> Self::Scalar { |
| 319 | + // LLVM product is inaccurate on i586 |
| 320 | + if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) { |
| 321 | + self.as_array().iter().product() |
| 322 | + } else { |
| 323 | + // Safety: `self` is a float vector |
| 324 | + unsafe { intrinsics::simd_reduce_mul_ordered(self, 1.) } |
| 325 | + } |
| 326 | + } |
| 327 | + |
| 328 | + #[inline] |
| 329 | + fn reduce_max(self) -> Self::Scalar { |
| 330 | + // Safety: `self` is a float vector |
| 331 | + unsafe { intrinsics::simd_reduce_max(self) } |
| 332 | + } |
| 333 | + |
| 334 | + #[inline] |
| 335 | + fn reduce_min(self) -> Self::Scalar { |
| 336 | + // Safety: `self` is a float vector |
| 337 | + unsafe { intrinsics::simd_reduce_min(self) } |
| 338 | + } |
| 339 | + } |
| 340 | + )* |
| 341 | + } |
| 342 | +} |
| 343 | + |
| 344 | +impl_trait! { f32 { bits: u32, mask: i32 }, f64 { bits: u64, mask: i64 } } |
0 commit comments