Skip to content

Commit db013ec

Browse files
committed
Improve __clzsi2 performance
1 parent f3846bc commit db013ec

File tree

5 files changed

+206
-89
lines changed

5 files changed

+206
-89
lines changed

src/int/leading_zeros.rs

+143
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,143 @@
1+
// Note: these functions happen to produce the correct `usize::leading_zeros(0)` value
2+
// without a explicit zero check. Zero is probably common enough that it could warrant
3+
// adding a zero check at the beginning, but `__clzsi2` has a precondition that `x != 0`.
4+
// Compilers will insert the check for zero in cases where it is needed.
5+
6+
/// Returns the number of leading binary zeros in `x`.
7+
pub fn usize_leading_zeros_default(x: usize) -> usize {
8+
// The basic idea is to test if the higher bits of `x` are zero and bisect the number
9+
// of leading zeros. It is possible for all branches of the bisection to use the same
10+
// code path by conditionally shifting the higher parts down to let the next bisection
11+
// step work on the higher or lower parts of `x`. Instead of starting with `z == 0`
12+
// and adding to the number of zeros, it is slightly faster to start with
13+
// `z == usize::MAX.count_ones()` and subtract from the potential number of zeros,
14+
// because it simplifies the final bisection step.
15+
let mut x = x;
16+
// the number of potential leading zeros
17+
let mut z = usize::MAX.count_ones() as usize;
18+
// a temporary
19+
let mut t: usize;
20+
#[cfg(target_pointer_width = "64")]
21+
{
22+
t = x >> 32;
23+
if t != 0 {
24+
z -= 32;
25+
x = t;
26+
}
27+
}
28+
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
29+
{
30+
t = x >> 16;
31+
if t != 0 {
32+
z -= 16;
33+
x = t;
34+
}
35+
}
36+
t = x >> 8;
37+
if t != 0 {
38+
z -= 8;
39+
x = t;
40+
}
41+
t = x >> 4;
42+
if t != 0 {
43+
z -= 4;
44+
x = t;
45+
}
46+
t = x >> 2;
47+
if t != 0 {
48+
z -= 2;
49+
x = t;
50+
}
51+
// the last two bisections are combined into one conditional
52+
t = x >> 1;
53+
if t != 0 {
54+
z - 2
55+
} else {
56+
z - x
57+
}
58+
59+
// We could potentially save a few cycles by using the LUT trick from
60+
// "https://embeddedgurus.com/state-space/2014/09/
61+
// fast-deterministic-and-portable-counting-leading-zeros/".
62+
// However, 256 bytes for a LUT is too large for embedded use cases. We could remove
63+
// the last 3 bisections and use this 16 byte LUT for the rest of the work:
64+
//const LUT: [u8; 16] = [0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4];
65+
//z -= LUT[x] as usize;
66+
//z
67+
// However, it ends up generating about the same number of instructions. When benchmarked
68+
// on x86_64, it is slightly faster to use the LUT, but this is probably because of OOO
69+
// execution effects. Changing to using a LUT and branching is risky for smaller cores.
70+
}
71+
72+
// The above method does not compile well on RISC-V (because of the lack of predicated
73+
// instructions), producing code with many branches or using an excessively long
74+
// branchless solution. This method takes advantage of the set-if-less-than instruction on
75+
// RISC-V that allows `(x >= power-of-two) as usize` to be branchless.
76+
77+
/// Returns the number of leading binary zeros in `x`.
78+
pub fn usize_leading_zeros_riscv(x: usize) -> usize {
79+
let mut x = x;
80+
// the number of potential leading zeros
81+
let mut z = usize::MAX.count_ones() as usize;
82+
// a temporary
83+
let mut t: usize;
84+
85+
// RISC-V does not have a set-if-greater-than-or-equal instruction and
86+
// `(x >= power-of-two) as usize` will get compiled into two instructions, but this is
87+
// still the most optimal method. A conditional set can only be turned into a single
88+
// immediate instruction if `x` is compared with an immediate `imm` (that can fit into
89+
// 12 bits) like `x < imm` but not `imm < x` (because the immediate is always on the
90+
// right). If we try to save an instruction by using `x < imm` for each bisection, we
91+
// have to shift `x` left and compare with powers of two approaching `usize::MAX + 1`,
92+
// but the immediate will never fit into 12 bits and never save an instruction.
93+
#[cfg(target_pointer_width = "64")]
94+
{
95+
// If the upper 32 bits of `x` are not all 0, `t` is set to `1 << 5`, otherwise
96+
// `t` is set to 0.
97+
t = ((x >= (1 << 32)) as usize) << 5;
98+
// If `t` was set to `1 << 5`, then the upper 32 bits are shifted down for the
99+
// next step to process.
100+
x >>= t;
101+
// If `t` was set to `1 << 5`, then we subtract 32 from the number of potential
102+
// leading zeros
103+
z -= t;
104+
}
105+
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
106+
{
107+
t = ((x >= (1 << 16)) as usize) << 4;
108+
x >>= t;
109+
z -= t;
110+
}
111+
t = ((x >= (1 << 8)) as usize) << 3;
112+
x >>= t;
113+
z -= t;
114+
t = ((x >= (1 << 4)) as usize) << 2;
115+
x >>= t;
116+
z -= t;
117+
t = ((x >= (1 << 2)) as usize) << 1;
118+
x >>= t;
119+
z -= t;
120+
t = (x >= (1 << 1)) as usize;
121+
x >>= t;
122+
z -= t;
123+
// All bits except the LSB are guaranteed to be zero for this final bisection step.
124+
// If `x != 0` then `x == 1` and subtracts one potential zero from `z`.
125+
z - x
126+
}
127+
128+
intrinsics! {
129+
#[maybe_use_optimized_c_shim]
130+
#[cfg(any(
131+
target_pointer_width = "16",
132+
target_pointer_width = "32",
133+
target_pointer_width = "64"
134+
))]
135+
/// Returns the number of leading binary zeros in `x`.
136+
pub extern "C" fn __clzsi2(x: usize) -> usize {
137+
if cfg!(any(target_arch = "riscv32", target_arch = "riscv64")) {
138+
usize_leading_zeros_riscv(x)
139+
} else {
140+
usize_leading_zeros_default(x)
141+
}
142+
}
143+
}

src/int/mod.rs

+3-66
Original file line numberDiff line numberDiff line change
@@ -13,11 +13,14 @@ macro_rules! os_ty {
1313
}
1414

1515
pub mod addsub;
16+
pub mod leading_zeros;
1617
pub mod mul;
1718
pub mod sdiv;
1819
pub mod shift;
1920
pub mod udiv;
2021

22+
pub use self::leading_zeros::__clzsi2;
23+
2124
/// Trait for some basic operations on integers
2225
pub(crate) trait Int:
2326
Copy
@@ -300,69 +303,3 @@ macro_rules! impl_wide_int {
300303

301304
impl_wide_int!(u32, u64, 32);
302305
impl_wide_int!(u64, u128, 64);
303-
304-
intrinsics! {
305-
#[maybe_use_optimized_c_shim]
306-
#[cfg(any(
307-
target_pointer_width = "16",
308-
target_pointer_width = "32",
309-
target_pointer_width = "64"
310-
))]
311-
pub extern "C" fn __clzsi2(x: usize) -> usize {
312-
// TODO: const this? Would require const-if
313-
// Note(Lokathor): the `intrinsics!` macro can't process mut inputs
314-
let mut x = x;
315-
let mut y: usize;
316-
let mut n: usize = {
317-
#[cfg(target_pointer_width = "64")]
318-
{
319-
64
320-
}
321-
#[cfg(target_pointer_width = "32")]
322-
{
323-
32
324-
}
325-
#[cfg(target_pointer_width = "16")]
326-
{
327-
16
328-
}
329-
};
330-
#[cfg(target_pointer_width = "64")]
331-
{
332-
y = x >> 32;
333-
if y != 0 {
334-
n -= 32;
335-
x = y;
336-
}
337-
}
338-
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
339-
{
340-
y = x >> 16;
341-
if y != 0 {
342-
n -= 16;
343-
x = y;
344-
}
345-
}
346-
y = x >> 8;
347-
if y != 0 {
348-
n -= 8;
349-
x = y;
350-
}
351-
y = x >> 4;
352-
if y != 0 {
353-
n -= 4;
354-
x = y;
355-
}
356-
y = x >> 2;
357-
if y != 0 {
358-
n -= 2;
359-
x = y;
360-
}
361-
y = x >> 1;
362-
if y != 0 {
363-
n - 2
364-
} else {
365-
n - x
366-
}
367-
}
368-
}

testcrate/Cargo.toml

+6
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,12 @@ doctest = false
1111
[build-dependencies]
1212
rand = "0.7"
1313

14+
[dev-dependencies]
15+
# For fuzzing tests we want a deterministic seedable RNG. We also eliminate potential
16+
# problems with system RNGs on the variety of platforms this crate is tested on.
17+
# `xoshiro128**` is used for its quality, size, and speed at generating `u32` shift amounts.
18+
rand_xoshiro = "0.4"
19+
1420
[dependencies.compiler_builtins]
1521
path = ".."
1622
default-features = false

testcrate/tests/count_leading_zeros.rs

-23
This file was deleted.

testcrate/tests/leading_zeros.rs

+54
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,54 @@
1+
use rand_xoshiro::rand_core::{RngCore, SeedableRng};
2+
use rand_xoshiro::Xoshiro128StarStar;
3+
4+
use compiler_builtins::int::__clzsi2;
5+
use compiler_builtins::int::leading_zeros::{
6+
usize_leading_zeros_default, usize_leading_zeros_riscv,
7+
};
8+
9+
#[test]
10+
fn __clzsi2_test() {
11+
// Binary fuzzer. We cannot just send a random number directly to `__clzsi2()`, because we need
12+
// large sequences of zeros to test. This XORs, ANDs, and ORs random length strings of 1s to
13+
// `x`. ORs insure sequences of ones, ANDs insures sequences of zeros, and XORs are not often
14+
// destructive but add entropy.
15+
let mut rng = Xoshiro128StarStar::seed_from_u64(0);
16+
let mut x = 0usize;
17+
// creates a mask for indexing the bits of the type
18+
let bit_indexing_mask = usize::MAX.count_ones() - 1;
19+
// 10000 iterations is enough to make sure edge cases like single set bits are tested and to go
20+
// through many paths.
21+
for _ in 0..10_000 {
22+
let r0 = bit_indexing_mask & rng.next_u32();
23+
// random length of ones
24+
let ones: usize = !0 >> r0;
25+
let r1 = bit_indexing_mask & rng.next_u32();
26+
// random circular shift
27+
let mask = ones.rotate_left(r1);
28+
match rng.next_u32() % 4 {
29+
0 => x |= mask,
30+
1 => x &= mask,
31+
// both 2 and 3 to make XORs as common as ORs and ANDs combined
32+
_ => x ^= mask,
33+
}
34+
let lz = x.leading_zeros() as usize;
35+
let lz0 = __clzsi2(x);
36+
let lz1 = usize_leading_zeros_default(x);
37+
let lz2 = usize_leading_zeros_riscv(x);
38+
if lz0 != lz {
39+
panic!("__clzsi2({}): expected: {}, found: {}", x, lz, lz0);
40+
}
41+
if lz1 != lz {
42+
panic!(
43+
"usize_leading_zeros_default({}): expected: {}, found: {}",
44+
x, lz, lz1
45+
);
46+
}
47+
if lz2 != lz {
48+
panic!(
49+
"usize_leading_zeros_riscv({}): expected: {}, found: {}",
50+
x, lz, lz2
51+
);
52+
}
53+
}
54+
}

0 commit comments

Comments
 (0)