-
Notifications
You must be signed in to change notification settings - Fork 95
/
319.py
262 lines (215 loc) · 8.14 KB
/
319.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
Problem:
An 8-puzzle is a game played on a 3 x 3 board of tiles, with the ninth tile missing.
The remaining tiles are labeled 1 through 8 but shuffled randomly. Tiles may slide
horizontally or vertically into an empty space, but may not be removed from the board.
Design a class to represent the board, and find a series of steps to bring the board
to the state [[1, 2, 3], [4, 5, 6], [7, 8, None]].
"""
# this is an improvised version of the method available at:
# https://gist.github.com/flatline/838202
from __future__ import annotations
from math import sqrt
from typing import Callable, List, Mapping, Tuple, Union
FINAL_STATE = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
def index(item: EightPuzzle, seq: List[EightPuzzle]) -> int:
"""
Helper function that returns -1 for non-found index value of a seq
"""
if item in seq:
return seq.index(item)
return -1
class EightPuzzle:
def __init__(self, board: List[List[int]]) -> None:
# heuristic value
self._hval = 0
# search depth of current instance
self._depth = 0
# parent node in search path
self._parent = None
self.adj_matrix = []
self.adj_matrix = board
def __eq__(self, other: EightPuzzle) -> bool:
return self.adj_matrix == other.adj_matrix
def __str__(self) -> str:
res = ""
for row in range(3):
res += " ".join(map(str, self.adj_matrix[row]))
res += "\r\n"
return res
def _clone(self) -> EightPuzzle:
copy = [[elem for elem in row] for row in self.adj_matrix]
p = EightPuzzle(copy)
return p
def _get_legal_moves(self) -> List[Tuple[int, int]]:
"""
Returns list of tuples with which the free space may be swapped
"""
# get row and column of the empty piece
row, col = self.find(0)
free = []
# find which pieces can move there
if row > 0:
free.append((row - 1, col))
if col > 0:
free.append((row, col - 1))
if row < 2:
free.append((row + 1, col))
if col < 2:
free.append((row, col + 1))
return free
def _generate_moves(self) -> Mapping[EightPuzzle]:
free = self._get_legal_moves()
zero = self.find(0)
def swap_and_clone(a: int, b: int) -> EightPuzzle:
p = self._clone()
p.swap(a, b)
p._depth = self._depth + 1
p._parent = self
return p
return map(lambda pair: swap_and_clone(zero, pair), free)
def _generate_solution_path(self, path: List[EightPuzzle]):
if self._parent is None:
return path
path.append(self)
return self._parent._generate_solution_path(path)
def solve(self, h: Callable) -> Tuple[List[EightPuzzle], int]:
"""
Performs A* search for goal state.
h(puzzle) - heuristic function, returns an integer
"""
def is_solved(puzzle: EightPuzzle) -> bool:
return puzzle.adj_matrix == FINAL_STATE
openl = [self]
closedl = []
move_count = 0
while len(openl) > 0:
x = openl.pop(0)
move_count += 1
if is_solved(x):
if len(closedl) > 0:
return x._generate_solution_path([]), move_count
else:
return [x]
succ = x._generate_moves()
idx_open = idx_closed = -1
for move in succ:
# have we already seen this node?
idx_open = index(move, openl)
idx_closed = index(move, closedl)
hval = h(move)
fval = hval + move._depth
if idx_closed == -1 and idx_open == -1:
move._hval = hval
openl.append(move)
elif idx_open > -1:
copy = openl[idx_open]
if fval < copy._hval + copy._depth:
# copy move's values over existing
copy._hval = hval
copy._parent = move._parent
copy._depth = move._depth
elif idx_closed > -1:
copy = closedl[idx_closed]
if fval < copy._hval + copy._depth:
move._hval = hval
closedl.remove(copy)
openl.append(move)
closedl.append(x)
openl = sorted(openl, key=lambda p: p._hval + p._depth)
# if finished state not found, return failure
return [], 0
def find(self, value: int) -> Tuple[int, int]:
"""
returns the row, col coordinates of the specified value in the graph
"""
if value < 0 or value > 8:
raise Exception("value out of range")
for row in range(3):
for col in range(3):
if self.adj_matrix[row][col] == value:
return row, col
def peek(self, row: int, col: int) -> int:
"""
returns the value at the specified row and column
"""
return self.adj_matrix[row][col]
def poke(self, row: int, col: int, value: int) -> int:
"""
sets the value at the specified row and column
"""
self.adj_matrix[row][col] = value
def swap(self, pos_a: Tuple[int, int], pos_b: Tuple[int, int]) -> None:
"""
swaps values at the specified coordinates
"""
temp = self.peek(*pos_a)
self.poke(pos_a[0], pos_a[1], self.peek(*pos_b))
self.poke(pos_b[0], pos_b[1], temp)
def heur(
puzzle: EightPuzzle, item_total_calc: Callable, total_calc: Callable
) -> Union[int, float]:
"""
Heuristic template that provides the current and target position for each number
and the total function.
Parameters:
puzzle - the puzzle
item_total_calc - takes 4 parameters: current row, target row, current col, target
col.
Returns int.
total_calc - takes 1 parameter, the sum of item_total_calc over all entries, and
returns int.
This is the value of the heuristic function
"""
t = 0
for row in range(3):
for col in range(3):
val = puzzle.peek(row, col) - 1
target_col = val % 3
target_row = val / 3
# account for 0 as blank
if target_row < 0:
target_row = 2
t += item_total_calc(row, target_row, col, target_col)
return total_calc(t)
# some heuristic functions, the best being the standard manhattan distance in this
# case, as it comes closest to maximizing the estimated distance while still being
# admissible.
def h_manhattan(puzzle: EightPuzzle) -> Union[int, float]:
return heur(puzzle, lambda r, tr, c, tc: abs(tr - r) + abs(tc - c), lambda t: t)
def h_manhattan_lsq(puzzle: EightPuzzle) -> Union[int, float]:
return heur(
puzzle,
lambda r, tr, c, tc: (abs(tr - r) + abs(tc - c)) ** 2,
lambda t: sqrt(t),
)
def h_linear(puzzle: EightPuzzle) -> Union[int, float]:
return heur(
puzzle,
lambda r, tr, c, tc: sqrt(sqrt((tr - r) ** 2 + (tc - c) ** 2)),
lambda t: t,
)
def h_linear_lsq(puzzle: EightPuzzle) -> Union[int, float]:
return heur(
puzzle,
lambda r, tr, c, tc: (tr - r) ** 2 + (tc - c) ** 2,
lambda t: sqrt(t),
)
def solve_8_puzzle(board: List[List[int]]) -> None:
transformed_board = [[elem if elem else 0 for elem in row] for row in board]
p = EightPuzzle(transformed_board)
print(p)
path, count = p.solve(h_manhattan)
path.reverse()
for i in path:
print(i)
print("Solved with Manhattan distance exploring", count, "states")
path, count = p.solve(h_manhattan_lsq)
print("Solved with Manhattan least squares exploring", count, "states")
path, count = p.solve(h_linear)
print("Solved with linear distance exploring", count, "states")
path, count = p.solve(h_linear_lsq)
print("Solved with linear least squares exploring", count, "states")
if __name__ == "__main__":
board = [[4, 1, 2], [7, 5, 3], [None, 8, 6]]
solve_8_puzzle(board)