-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy path038.py
50 lines (38 loc) · 1.29 KB
/
038.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
Problem:
You have an N by N board. Write a function that, given N, returns the number of
possible arrangements of the board where N queens can be placed on the board without
threatening each other, i.e. no two queens share the same row, column, or diagonal.
"""
from typing import List
def n_queens(n: int, queen_positions: List[int] = []) -> int:
# N Queen solution using backtracking
if n == len(queen_positions):
return 1
count = 0
for col in range(n):
queen_positions.append(col)
if is_valid(queen_positions):
count += n_queens(n, queen_positions)
queen_positions.pop()
return count
def is_valid(queen_positions: List[int]) -> bool:
# check to see if any queen is threatening the current queen
current_queen_row, current_queen_col = len(queen_positions) - 1, queen_positions[-1]
for row, col in enumerate(queen_positions[:-1]):
diff = abs(current_queen_col - col)
if (
diff == 0 # same row
or diff == current_queen_row - row # same diagonal
):
return False
return True
if __name__ == "__main__":
print(n_queens(1))
print(n_queens(4))
print(n_queens(5))
"""
SPECS:
TIME COMPLEXITY: O(2 ^ n)
SPACE COMPLEXITY: O(n)
"""