-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprediction.py
49 lines (32 loc) · 1.12 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# coding: utf-8
# In[9]:
#from keras.models import Sequential
#from keras.layers import Dense
from keras.models import model_from_json
import numpy as np
import cv2
from keras import optimizers
def read_img(img_path):
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = cv2.resize(img, (200,200))
img=np.resize(img,(1,200,200,3))
img=img/255.0
return img
def find_race(image,gender):
json_file = open('race_model/model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
if gender=='female':
loaded_model.load_weights("Fweights/weights-improvement.hdf5")
else:
loaded_model.load_weights("Mweights/weights-improvement.hdf5")
image=read_img(image)
loaded_model.compile(loss='categorical_crossentropy', optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
x=np.argmax(loaded_model.predict(image))
cls=['Asian','Black','Indian','White']
return cls[x]
if __name__ == '__main__':
print(find_race('images/man.jpg','male'))