forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcp_sat_example.py
executable file
·76 lines (65 loc) · 2.27 KB
/
cp_sat_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python3
# Copyright 2010-2025 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Simple solve."""
# [START import]
from ortools.sat.python import cp_model
# [END import]
def main() -> None:
"""Minimal CP-SAT example to showcase calling the solver."""
# Creates the model.
# [START model]
model = cp_model.CpModel()
# [END model]
# Creates the variables.
# [START variables]
var_upper_bound = max(50, 45, 37)
x = model.new_int_var(0, var_upper_bound, "x")
y = model.new_int_var(0, var_upper_bound, "y")
z = model.new_int_var(0, var_upper_bound, "z")
# [END variables]
# Creates the constraints.
# [START constraints]
model.add(2 * x + 7 * y + 3 * z <= 50)
model.add(3 * x - 5 * y + 7 * z <= 45)
model.add(5 * x + 2 * y - 6 * z <= 37)
# [END constraints]
# [START objective]
model.maximize(2 * x + 2 * y + 3 * z)
# [END objective]
# Creates a solver and solves the model.
# [START solve]
solver = cp_model.CpSolver()
status = solver.solve(model)
# [END solve]
# [START print_solution]
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print(f"Maximum of objective function: {solver.objective_value}\n")
print(f"x = {solver.value(x)}")
print(f"y = {solver.value(y)}")
print(f"z = {solver.value(z)}")
else:
print("No solution found.")
# [END print_solution]
# Statistics.
# [START statistics]
print("\nStatistics")
print(f" status : {solver.status_name(status)}")
print(f" conflicts: {solver.num_conflicts}")
print(f" branches : {solver.num_branches}")
print(f" wall time: {solver.wall_time} s")
# [END statistics]
if __name__ == "__main__":
main()
# [END program]