-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheffect_of_depth.py
369 lines (311 loc) · 16.3 KB
/
effect_of_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import json
from collections import defaultdict
import os
import math
from datetime import datetime
from math import log, floor, isnan
import torch.nn.functional as F
from torch.autograd import grad
import torch.optim.lr_scheduler as schedulers
from torch import optim
from torch import nn
import torch
from torch.nn import MSELoss
from network import W
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat
from scipy.interpolate import griddata
import cupy
from torch.utils.dlpack import to_dlpack
from torch.utils.dlpack import from_dlpack
import time
from itertools import product, combinations
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.gridspec as gridspec
torch.manual_seed(0)
# CUDA support
if torch.cuda.is_available():
pytorch_device = torch.device('cuda')
torch.cuda.init()
device_string = "cuda"
torch.cuda.manual_seed_all(0)
else:
pytorch_device = torch.device('cpu')
device_string = "cpu"
print(f"Device being used: {device_string}")
# global transposes of the sparse matrices
L_t= None
class Cupy_mul_L(torch.autograd.Function):
@staticmethod
def forward(ctx, u_pred_, sparse):
"""
u_pred is the network's prediction
"""
return from_dlpack(sparse.dot(cupy.from_dlpack(to_dlpack(u_pred_))).toDlpack())
@staticmethod
def backward(ctx, grad_output):
"""
grad_output is with respect to u_pred
"""
return from_dlpack(L_t.dot(cupy.from_dlpack(to_dlpack(grad_output))).toDlpack()), None
class Trainer:
def __init__(self, config=None, **kwargs):
self.lr = config['lr']
self.network_precision_string = config['precision']
self.network_precision_dtype = torch.float32 if self.network_precision_string == "float32" else torch.float64
self.epochs = config['epochs']
self.__dict__.update(kwargs)
self.logged_results = defaultdict(list)
self.f_pred_ = None
self.boundary_loss_term_ = None
self.w = W(config)
if self.verbosity:
print(self.w, '\n')
# interior points
self.x_interior = torch.vstack([self.x_i.clone()])
self.y_interior = torch.vstack([self.y_i.clone()])
self.X_interior = torch.hstack([self.x_interior, self.y_interior])
# interior and boundary points
self.x_tilde = torch.vstack([self.x_i.clone(), self.x_b.clone()])
self.y_tilde = torch.vstack([self.y_i.clone(), self.y_b.clone()])
self.X_tilde = torch.hstack([self.x_tilde, self.y_tilde])
# interior, boundary, and ghost points
self.x_full = torch.vstack([self.x_i.clone(), self.x_b.clone(), self.x_g.clone()])
self.y_full = torch.vstack([self.y_i.clone(), self.y_b.clone(), self.y_g.clone()])
self.X_full = torch.hstack([self.x_full, self.y_full])
# boundary points
self.X_b = torch.hstack([self.x_b.clone(), self.y_b.clone()])
if config['optimizer'] == 'adam':
self.optimizer_choice = optim.Adam
elif config['optimizer'] == 'lbfgs':
self.optimizer_choice = optim.LBFGS
elif config['optimizer'] == 'sgd':
self.optimizer_choice = optim.SGD
self.optimizer = self.optimizer_choice(self.w.parameters(), lr=self.lr)
@staticmethod
def compute_mse(a, b):
mse = MSELoss()(torch.flatten(a), torch.flatten(b))
return mse.item()
@staticmethod
def compute_l2(a, b):
diff = torch.subtract(torch.flatten(a).detach().cpu(), torch.flatten(b).detach().cpu())
relative_l2_error = torch.linalg.norm(diff) / torch.linalg.norm(torch.flatten(b))
return relative_l2_error.item()
@staticmethod
def compute_linf(a):
return torch.linalg.norm(a.to(PRECISION), ord=float('inf')).item()
def train(self):
# multiplying L and B with random vectors to "generate a kernel" and move them to the GPU
rand_vec = cupy.from_dlpack(to_dlpack(torch.rand(self.L.shape[1], 2).to(torch.float64).to(device_string)))
self.L.dot(rand_vec)
L_mul = Cupy_mul_L.apply
# discrete
u_pred_full = self.w.forward(self.X_full)
assert self.X_full.dtype == torch.float64
assert u_pred_full.dtype == torch.float64
if device_string == "cuda":
torch.cuda.synchronize() # first call to get all cuda tensors on GPU
start = time.perf_counter()
discrete_value = L_mul(u_pred_full, self.L)
if device_string == "cuda":
torch.cuda.synchronize() # second call right before time clock to finish all operations
discrete_time = time.perf_counter() - start
# fp64 autograd
u_pred_tilde = self.w.forward(self.X_tilde)
if device_string == "cuda":
torch.cuda.synchronize() # first call to get all cuda tensors on GPU
start = time.perf_counter()
u_x = grad(u_pred_tilde, self.x_tilde, grad_outputs=torch.ones_like(
u_pred_tilde), create_graph=True, retain_graph=True)[0]
u_xx = grad(u_x, self.x_tilde, grad_outputs=torch.ones_like(
u_pred_tilde), create_graph=True, retain_graph=True)[0]
u_y = grad(u_pred_tilde, self.y_tilde, grad_outputs=torch.ones_like(
u_pred_tilde), create_graph=True, retain_graph=True)[0]
u_yy = grad(u_y, self.y_tilde, grad_outputs=torch.ones_like(
u_pred_tilde), create_graph=True, retain_graph=True)[0]
# Poisson residual
fp64_autograd_value = (u_xx + u_yy)
if device_string == "cuda":
torch.cuda.synchronize() # second call right before time clock to finish all operations
fp64_autograd_time = time.perf_counter() - start
# fp32 autograd
self.x_tilde = self.x_tilde.to(torch.float32)
self.y_tilde = self.y_tilde.to(torch.float32)
self.X_tilde = torch.hstack([self.x_tilde, self.y_tilde])
config['precision'] = 'float32'
self.w = W(config)
u_pred_tilde = self.w.forward(self.X_tilde)
assert self.x_tilde.dtype == torch.float32
assert self.y_tilde.dtype == torch.float32
assert u_pred_tilde.dtype == torch.float32
if device_string == "cuda":
torch.cuda.synchronize() # first call to get all cuda tensors on GPU
start = time.perf_counter()
u_x = grad(u_pred_tilde, self.x_tilde, grad_outputs=torch.ones_like(
u_pred_tilde), create_graph=True, retain_graph=True)[0]
u_xx = grad(u_x, self.x_tilde, grad_outputs=torch.ones_like(
u_pred_tilde), create_graph=True, retain_graph=True)[0]
u_y = grad(u_pred_tilde, self.y_tilde, grad_outputs=torch.ones_like(
u_pred_tilde), create_graph=True, retain_graph=True)[0]
u_yy = grad(u_y, self.y_tilde, grad_outputs=torch.ones_like(
u_pred_tilde), create_graph=True, retain_graph=True)[0]
# Poisson residual
fp32_autograd_value = (u_xx + u_yy)
if device_string == "cuda":
torch.cuda.synchronize() # second call right before time clock to finish all operations
fp32_autograd_time = time.perf_counter() - start
discrete_fp64_autograd_l2 = self.compute_l2(discrete_value, fp64_autograd_value)
fp32_autograd_fp64_autograd_l2 = self.compute_l2(fp32_autograd_value, fp64_autograd_value)
# storing losses in variables
self.logged_results['discrete_time'].append(discrete_time)
self.logged_results['fp32_autograd_time'].append(fp32_autograd_time)
self.logged_results['fp64_autograd_time'].append(fp64_autograd_time)
self.logged_results['discrete_fp64_autograd_l2'].append(discrete_fp64_autograd_l2)
self.logged_results['fp32_autograd_fp64_autograd_l2'].append(fp32_autograd_fp64_autograd_l2)
return dict(self.logged_results)
def load_mat_cupy(mat):
csr = csr_matrix(mat, dtype=np.float64)
return csr
def save_results(data, file_name):
with open(file_name, 'w') as f:
json.dump(data, f, indent=4)
if __name__ == "__main__":
# cupy setup
device = cupy.cuda.Device(0)
cupy.cuda.Device(0).use()
PRECISION = torch.float64
network_precisions = ["float64"]
orders = [2, 3, 4, 5]
layers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# just one training set size
size = 19638
supervised_options = [False]
activation_function = 'tanh'
lr = 0.04
for network_precision in network_precisions:
results_folder = f"gpu_effect_depth_discrete_{network_precision}_vs_fp32_fp64_autograd"
print(f"\nUsing network precision:{network_precision}")
for cur_supervised_option in supervised_options:
print(f'\nGoing over supervised={cur_supervised_option}')
for layer in layers:
print(f"Going over layer={layer}")
for order in orders:
supervised_file_bool = 'supervised' if cur_supervised_option else 'unsupervised'
file_name = f"{order}_{size}"
test_name = f"{order}_21748_test"
save_folder = f'../{results_folder}/discrete_pinn/{order}/{size}/{layer}/{supervised_file_bool}/'
if not os.path.isdir(save_folder):
os.makedirs(save_folder)
save_file_name = save_folder + 'results.json'
print('\n\n')
print('+'*70)
print(f'Finding effect of neural network depth {file_name} with {activation_function}')
print('+'*70)
print('\n\n')
# read mat files
X_i = torch.tensor(loadmat(f"../scai/files_{file_name}/Xi.mat")["Xi"], dtype=PRECISION, requires_grad=True).to(device_string)
X_b = torch.tensor(loadmat(f"../scai/files_{file_name}/Xb.mat")["Xb"], dtype=PRECISION, requires_grad=True).to(device_string)
X_g = torch.tensor(loadmat(f"../scai/files_{file_name}/Xg.mat")["X_g"], dtype=PRECISION, requires_grad=True).to(device_string)
n = torch.tensor(loadmat(f"../scai/files_{file_name}/n.mat")["n"], dtype=PRECISION, requires_grad=True).to(device_string)
u_true = torch.tensor(loadmat(f"../scai/files_{file_name}/u.mat")["u"], dtype=PRECISION).to(device_string)
f = torch.tensor(loadmat(f"../scai/files_{file_name}/f.mat")["f"], dtype=PRECISION, requires_grad=True).to(device_string)
g = torch.tensor(loadmat(f"../scai/files_{file_name}/g.mat")["g"], dtype=PRECISION, requires_grad=True).to(device_string)
alpha = torch.tensor(loadmat(f"../scai/files_{file_name}/alpha.mat")["Neucoeff"], dtype=PRECISION, requires_grad=True).to(device_string)
beta = torch.tensor(loadmat(f"../scai/files_{file_name}/beta.mat")["Dircoeff"], dtype=PRECISION, requires_grad=True).to(device_string)
L = load_mat_cupy(loadmat(f"../scai/files_{file_name}/L1.mat")["L1"])
B = load_mat_cupy(loadmat(f"../scai/files_{file_name}/B1.mat")["B1"])
time.sleep(1)
b_starts = X_i.shape[0]
b_end = b_starts + X_b.shape[0]
# test files
X_i_test = torch.tensor(loadmat(f"../scai/files_{test_name}/Xi.mat")["Xi"], dtype=PRECISION, requires_grad=True).to(device_string)
X_b_test = torch.tensor(loadmat(f"../scai/files_{test_name}/Xb.mat")["Xb"], dtype=PRECISION, requires_grad=True).to(device_string)
test_u_true = torch.tensor(loadmat(f"../scai/files_{test_name}/u.mat")["u"], dtype=PRECISION).to(device_string)
f_test = torch.tensor(loadmat(f"../scai/files_{test_name}/f.mat")["f"], dtype=PRECISION, requires_grad=True).to(device_string)
g_test = torch.tensor(loadmat(f"../scai/files_{test_name}/g.mat")["g"], dtype=PRECISION, requires_grad=True).to(device_string)
alpha_test = torch.tensor(loadmat(f"../scai/files_{test_name}/alpha.mat")["Neucoeff"], dtype=PRECISION, requires_grad=True).to(device_string)
beta_test = torch.tensor(loadmat(f"../scai/files_{test_name}/beta.mat")["Dircoeff"], dtype=PRECISION, requires_grad=True).to(device_string)
n_test = torch.tensor(loadmat(f"../scai/files_{test_name}/n.mat")["n"], dtype=PRECISION, requires_grad=True).to(device_string)
test_x_i = X_i_test[:, 0].unsqueeze(dim=1)
test_y_i = X_i_test[:, 1].unsqueeze(dim=1)
test_x_b = X_b_test[:, 0].unsqueeze(dim=1)
test_y_b = X_b_test[:, 1].unsqueeze(dim=1)
test_x_tilde = torch.vstack([test_x_i, test_x_b])
test_y_tilde = torch.vstack([test_y_i, test_y_b])
test_X_tilde = torch.hstack([test_x_tilde, test_y_tilde])
test_X_b = torch.hstack([test_x_b, test_y_b])
# need to separate the spatial dimensions in X matrices for proper partial derivatives with autograd
x_i = X_i[:, 0].unsqueeze(dim=1)
y_i = X_i[:, 1].unsqueeze(dim=1)
x_b = X_b[:, 0].unsqueeze(dim=1)
y_b = X_b[:, 1].unsqueeze(dim=1)
x_g = X_g[:, 0].unsqueeze(dim=1)
y_g = X_g[:, 1].unsqueeze(dim=1)
# only compute losses on interior and boundary points
ib_idx = X_i.shape[0] + X_b.shape[0]
# define list for Trainer input
config = {
'spatial_dim': 2,
'precision': network_precision,
'activation': activation_function,
'order': 2, # activation order
'network_device': device_string,
'layers': layer,
'nodes': 50,
'epochs': 1,
'optimizer': 'lbfgs',
'lr': lr,
}
print(f"Learning rate: {config['lr']}")
vars = {
'n': n,
'x_i': x_i,
'x_b': x_b,
'x_g': x_g,
'y_i': y_i,
'y_b': y_b,
'y_g': y_g,
'ib_idx': ib_idx,
'u_true': u_true,
'L': L,
'B': B,
'test_X_tilde': test_X_tilde,
'test_u_true': test_u_true,
'test_x_i': test_x_i,
'test_y_i': test_y_i,
'test_x_b': test_x_b,
'test_y_b': test_y_b,
'test_x_tilde': test_x_tilde,
'test_y_tilde': test_y_tilde,
'test_X_b': test_X_b,
'f_test': f_test,
'beta_test': beta_test,
'alpha_test': alpha_test,
'g_test': g_test,
'n_test': n_test,
'f': f,
'g': g,
'alpha': alpha,
'beta': beta,
'b_end': b_end,
'b_starts': b_starts,
'supervised': cur_supervised_option,
'print_interval': 10,
'verbosity': False,
}
flag = True
while flag:
trainer = Trainer(config=config, **vars)
logged_results = trainer.train()
if type(logged_results) == bool:
config['lr'] /= 2.0
print(f"Restarting with learning rate = {config['lr']}")
continue
else:
flag = False
logged_results = logged_results | config
save_results(logged_results, save_file_name)
config['lr'] = lr