-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdtpinn_cupy_fp64_nonlinear.py
506 lines (430 loc) · 23.8 KB
/
dtpinn_cupy_fp64_nonlinear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import json
from collections import defaultdict
import os
import math
from datetime import datetime
from math import log, floor, isnan
import torch.nn.functional as F
from torch.autograd import grad
from scipy.sparse import coo_matrix
import torch.optim.lr_scheduler as schedulers
from torch import optim
from torch import nn
import torch
from torch.nn import MSELoss
from network import W
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat
from scipy.interpolate import griddata
import cupy
from cupy.sparse import csr_matrix
from torch.utils.dlpack import to_dlpack
from torch.utils.dlpack import from_dlpack
import time
from itertools import product, combinations
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.gridspec as gridspec
torch.manual_seed(0)
# CUDA support
if torch.cuda.is_available():
pytorch_device = torch.device('cuda')
torch.cuda.init()
device_string = "cuda"
torch.cuda.manual_seed_all(0)
else:
pytorch_device = torch.device('cpu')
device_string = "cpu"
print(f"Device being used: {device_string}")
# global transposes of the sparse matrices
L_t, B_t = None, None
class Cupy_mul_L(torch.autograd.Function):
@staticmethod
def forward(ctx, u_pred_, sparse):
"""
u_pred is the network's prediction
"""
return from_dlpack(sparse.dot(cupy.from_dlpack(to_dlpack(u_pred_))).toDlpack())
@staticmethod
def backward(ctx, grad_output):
"""
grad_output is with respect to u_pred
"""
return from_dlpack(L_t.dot(cupy.from_dlpack(to_dlpack(grad_output))).toDlpack()), None
class Cupy_mul_B(torch.autograd.Function):
@staticmethod
def forward(ctx, u_pred_, sparse):
"""
u_pred is the network's prediction
"""
return from_dlpack(sparse.dot(cupy.from_dlpack(to_dlpack(u_pred_))).toDlpack())
@staticmethod
def backward(ctx, grad_output):
"""
grad_output is with respect to u_pred
"""
return from_dlpack(B_t.dot(cupy.from_dlpack(to_dlpack(grad_output))).toDlpack()), None
class Trainer:
def __init__(self, config=None, **kwargs):
self.lr = config['lr']
self.network_precision_string = config['precision']
self.network_precision_dtype = torch.float32 if self.network_precision_string == "float32" else torch.float64
self.epochs = config['epochs']
self.__dict__.update(kwargs)
self.logged_results = defaultdict(list)
self.f_pred_ = None
self.boundary_loss_term_ = None
self.w = W(config)
if self.verbosity:
print(self.w, '\n')
# interior points
self.x_interior = torch.vstack([self.x_i.clone()])
self.y_interior = torch.vstack([self.y_i.clone()])
self.X_interior = torch.hstack([self.x_interior, self.y_interior])
# interior and boundary points
self.x_tilde = torch.vstack([self.x_i.clone(), self.x_b.clone()])
self.y_tilde = torch.vstack([self.y_i.clone(), self.y_b.clone()])
self.X_tilde = torch.hstack([self.x_tilde, self.y_tilde])
# interior, boundary, and ghost points
self.x_full = torch.vstack([self.x_i.clone(), self.x_b.clone(), self.x_g.clone()])
self.y_full = torch.vstack([self.y_i.clone(), self.y_b.clone(), self.y_g.clone()])
self.X_full = torch.hstack([self.x_full, self.y_full])
# boundary points
self.X_b = torch.hstack([self.x_b.clone(), self.y_b.clone()])
if config['optimizer'] == 'adam':
self.optimizer_choice = optim.Adam
elif config['optimizer'] == 'lbfgs':
self.optimizer_choice = optim.LBFGS
elif config['optimizer'] == 'sgd':
self.optimizer_choice = optim.SGD
self.optimizer = self.optimizer_choice(self.w.parameters(), lr=self.lr)
@staticmethod
def compute_mse(a, b):
mse = MSELoss()(torch.flatten(a), torch.flatten(b))
return mse.item()
@staticmethod
def compute_l2(a, b):
diff = torch.subtract(torch.flatten(a).detach().cpu(), torch.flatten(b).detach().cpu())
relative_l2_error = torch.linalg.norm(diff) / torch.linalg.norm(torch.flatten(b))
return relative_l2_error.item()
@staticmethod
def compute_linf(a):
return torch.linalg.norm(a.to(PRECISION), ord=float('inf')).item()
def train(self):
global L_t, B_t
epochs = self.epochs
# multiplying L and B with random vectors to "generate a kernel" and move them to the GPU
rand_vec = cupy.from_dlpack(to_dlpack(torch.rand(self.L.shape[1], 2).to(torch.float64).to(device_string)))
self.L.dot(rand_vec)
self.B.dot(rand_vec)
L_t = csr_matrix(self.L.transpose().astype(np.float64))
B_t = csr_matrix(self.B.transpose().astype(np.float64))
# initializing the matvec kernel for the sparse matrices' transposes
rand_L_vec = cupy.from_dlpack(to_dlpack(torch.rand(self.L.shape[0], 2).to(torch.float64).to(device_string)))
rand_B_vec = cupy.from_dlpack(to_dlpack(torch.rand(self.B.shape[0], 2).to(torch.float64).to(device_string)))
L_t.dot(rand_L_vec)
B_t.dot(rand_B_vec)
L_mul = Cupy_mul_L.apply
B_mul = Cupy_mul_B.apply
if device_string == "cuda":
torch.cuda.synchronize() # first call to get all cuda tensors on GPU
start = time.perf_counter()
for i in range(1, epochs + 1):
try:
def closure():
self.optimizer.zero_grad()
# u_pred_full on all points
u_pred_full = self.w.forward(self.X_full)
# pde being enforced on interior and boundary
f_pred = L_mul(u_pred_full, self.L) - self.f - torch.exp(u_pred_full[:self.ib_idx])
self.f_pred_ = f_pred
# boundary condition enforced on boundary
boundary_loss_term = B_mul(u_pred_full, self.B) - self.g
assert boundary_loss_term.dtype == torch.float64
self.boundary_loss_term_ = boundary_loss_term
l2 = torch.mean(torch.square(torch.flatten(f_pred)))
l3 = torch.mean(torch.square(torch.flatten(boundary_loss_term)))
train_loss = l2 + l3
train_loss.backward(retain_graph=True)
return train_loss.item()
loss_value = self.optimizer.step(closure)
# synchronize
if device_string == "cuda":
torch.cuda.synchronize() # second call right before time clock to finish all operations
epoch_time = time.perf_counter() - start
'''
logging errors and printing them
'''
training_pred = self.w.forward(self.X_tilde)
test_pred = self.w.forward(self.test_X_tilde)
# TRAINING
pred_tilde = self.w.forward(self.X_tilde)
u_x = grad(pred_tilde, self.x_tilde, grad_outputs=torch.ones_like(
pred_tilde), create_graph=True, retain_graph=True)[0]
u_xx = grad(u_x, self.x_tilde, grad_outputs=torch.ones_like(
pred_tilde), create_graph=True, retain_graph=True)[0]
u_y = grad(pred_tilde, self.y_tilde, grad_outputs=torch.ones_like(
pred_tilde), create_graph=True, retain_graph=True)[0]
u_yy = grad(u_y, self.y_tilde, grad_outputs=torch.ones_like(
pred_tilde), create_graph=True, retain_graph=True)[0]
# Poisson residual
pde_residual_training = (u_xx + u_yy) - self.f - torch.exp(pred_tilde)
boundary_pred = self.w.forward(self.X_b)
# first partial derivatives on the boundary
l2_w_x = grad(boundary_pred, self.x_b, grad_outputs=torch.ones_like(boundary_pred),
create_graph=True, retain_graph=True)[0]
l2_w_y = grad(boundary_pred, self.y_b, grad_outputs=torch.ones_like(boundary_pred),
create_graph=True, retain_graph=True)[0]
# combining the partial derivatives
w_xy = torch.hstack([l2_w_x, l2_w_y])
# element wise dot product between the normal vectors and first partial derivatives
gradient_n = torch.multiply(self.n, w_xy).sum(dim=1).unsqueeze(dim=1)
# loss on the boundary
boundary_residual_training = torch.multiply(self.alpha, gradient_n) + \
torch.multiply(self.beta, boundary_pred) - self.g
# TEST
pred_tilde_test = self.w.forward(self.test_X_tilde)
u_x = grad(pred_tilde_test, self.test_x_tilde, grad_outputs=torch.ones_like(
pred_tilde_test), create_graph=True, retain_graph=True)[0]
u_xx = grad(u_x, self.test_x_tilde, grad_outputs=torch.ones_like(
pred_tilde_test), create_graph=True, retain_graph=True)[0]
u_y = grad(pred_tilde_test, self.test_y_tilde, grad_outputs=torch.ones_like(
pred_tilde_test), create_graph=True, retain_graph=True)[0]
u_yy = grad(u_y, self.test_y_tilde, grad_outputs=torch.ones_like(
pred_tilde_test), create_graph=True, retain_graph=True)[0]
# Poisson residual
pde_residual_test = (u_xx + u_yy) - self.f_test - torch.exp(pred_tilde_test)
boundary_pred = self.w.forward(self.test_X_b)
# first partial derivatives on the boundary
l2_w_x = grad(boundary_pred, self.test_x_b, grad_outputs=torch.ones_like(boundary_pred),
create_graph=True, retain_graph=True)[0]
l2_w_y = grad(boundary_pred, self.test_y_b, grad_outputs=torch.ones_like(boundary_pred),
create_graph=True, retain_graph=True)[0]
# combining the partial derivatives
w_xy = torch.hstack([l2_w_x, l2_w_y])
# element wise dot product between the normal vectors and first partial derivatives
gradient_n = torch.multiply(self.n_test, w_xy).sum(dim=1).unsqueeze(dim=1)
# loss on the boundary
boundary_residual_test = torch.multiply(self.alpha_test, gradient_n) + \
torch.multiply(self.beta_test, boundary_pred) - self.g_test
# storing losses in variables
# ============================================================
training_discrete_pde_residual = self.compute_linf(self.f_pred_)
training_discrete_boundary_residual = self.compute_linf(self.boundary_loss_term_)
# ============================================================
training_pde_residual = self.compute_linf(pde_residual_training)
test_pde_residual = self.compute_linf(pde_residual_test)
training_boundary_residual = self.compute_linf(boundary_residual_training)
test_boundary_residual = self.compute_linf(boundary_residual_test)
training_mse = self.compute_mse(training_pred, self.u_true)
test_mse = self.compute_mse(test_pred, self.test_u_true)
training_l2 = self.compute_l2(training_pred, self.u_true)
test_l2 = self.compute_l2(test_pred, self.test_u_true)
# logging losses and other important things in lists
self.logged_results['training_losses'].append(loss_value)
self.logged_results['training_mse_losses'].append(training_mse)
self.logged_results['training_l2_losses'].append(training_l2)
self.logged_results['training_pde_residual'].append(training_pde_residual)
self.logged_results['training_boundary_residual'].append(training_boundary_residual)
self.logged_results['test_mse_losses'].append(test_mse)
self.logged_results['test_l2_losses'].append(test_l2)
self.logged_results['test_pde_residual'].append(test_pde_residual)
self.logged_results['test_boundary_residual'].append(test_boundary_residual)
self.logged_results['epochs_list'].append(i)
self.logged_results['epoch_time'].append(epoch_time)
self.logged_results['training_discrete_pde_residual'].append(training_discrete_pde_residual)
self.logged_results['training_discrete_boundary_residual'].append(training_discrete_boundary_residual)
# Anneal learning rate if the loss is more than moving average of previous 10 elements
annealing_count = 0
annealing_counter = 0
if annealing_count > 10 and loss_value > sum(self.logged_results['training_losses'][-11:-1])/10.:
annealing_count = 0
annealing_counter += 1
print('\n' + '-'*40)
print('Annealing learning rate.')
self.optimizer.param_groups[0]['lr'] -= 0.0025
print(f"New learning rate is: {self.optimizer.param_groups[0]['lr']}")
print('-'*40 + '\n')
annealing_count += 1
if i > 30 and (isnan(loss_value) or loss_value > 500):
# loss has exploded, this will trigger this run to restart
print(f"Loss exploded to: {loss_value}")
return False
if i % self.print_interval == 0 and self.verbosity:
print('='*70)
print(f'Iter {i},\nTraining loss = {loss_value}')
# laplacian(pinn) - f
print('\nLaplacian(pinn) - f')
print('===TRAINING' + '='*36)
print(training_pde_residual)
print('===TEST' + '='*40)
print(test_pde_residual)
# alpha * d/dn pinn + beta * pinn - g
print('\nalpha * d/dn pinn + beta * pinn - g')
print('===TRAINING' + '='*36)
print(training_boundary_residual)
print('===TEST' + '='*40)
print(test_boundary_residual)
# mse errors
print('\nMSE errors w.r.t. u_true')
# training
print('===TRAINING' + '='*36)
print(f'PINN MSE: {training_mse}')
# test
print('===TEST' + '='*40)
print(f'PINN MSE: {test_mse}')
# l2 errors
print(f'\nL2 errors w.r.t. u_true')
# training
print('===TRAINING' + '='*36)
print(f'PINN L2: {training_l2}')
# test
print('===TEST' + '='*40)
print(f'PINN L2: {test_l2}')
except KeyboardInterrupt:
print('Keyboard Interrupt. Ending training.')
return dict(self.logged_results)
print(f"Learning rate annealed {annealing_counter} times")
return dict(self.logged_results)
def load_mat_cupy(mat):
csr = csr_matrix(mat, dtype=np.float64)
return csr
def save_results(data, file_name):
with open(file_name, 'w') as f:
json.dump(data, f, indent=4)
if __name__ == "__main__":
# cupy setup
device = cupy.cuda.Device(0)
cupy.cuda.Device(0).use()
PRECISION = torch.float64
network_precisions = ["float64"]
orders = [2, 3, 4, 5]
training_size = [582, 828, 1663, 2236, 3196, 4977, 6114, 8767, 19638]
supervised_options = [False]
activation_function = 'tanh'
lr = 0.01
for network_precision in network_precisions:
results_folder = f"gpu_nonlinear_data_{network_precision}_cupy_csr_results_noprint"
print(f"\nUsing network precision:{network_precision}")
for cur_supervised_option in supervised_options:
print(f'\nGoing over supervised={cur_supervised_option}')
for order in orders:
for size in training_size:
supervised_file_bool = 'supervised' if cur_supervised_option else 'unsupervised'
file_name = f"{order}_{size}"
test_name = f"{order}_21748_test"
save_folder = f'../{results_folder}/discrete_pinn/{order}/{size}/{supervised_file_bool}/'
if not os.path.isdir(save_folder):
os.makedirs(save_folder)
save_file_name = save_folder + 'results.json'
print('\n\n')
print('+'*70)
print(f'Running {network_precision} nonlinear_data DT-PINN on {file_name} with {activation_function}')
print('+'*70)
print('\n\n')
# read mat files
X_i = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/Xi.mat")["Xi"], dtype=PRECISION, requires_grad=True).to(device_string)
X_b = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/Xb.mat")["Xb"], dtype=PRECISION, requires_grad=True).to(device_string)
X_g = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/Xg.mat")["X_g"], dtype=PRECISION, requires_grad=True).to(device_string)
n = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/n.mat")["n"], dtype=PRECISION, requires_grad=True).to(device_string)
u_true = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/u.mat")["u"], dtype=PRECISION).to(device_string)
f = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/f.mat")["f"], dtype=PRECISION, requires_grad=True).to(device_string)
g = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/g.mat")["g"], dtype=PRECISION, requires_grad=True).to(device_string)
alpha = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/alpha.mat")["Neucoeff"], dtype=PRECISION, requires_grad=True).to(device_string)
beta = torch.tensor(loadmat(f"../nonlinear/files_{file_name}/beta.mat")["Dircoeff"], dtype=PRECISION, requires_grad=True).to(device_string)
L = load_mat_cupy(loadmat(f"../nonlinear/files_{file_name}/L1.mat")["L1"])
B = load_mat_cupy(loadmat(f"../nonlinear/files_{file_name}/B1.mat")["B1"])
time.sleep(1)
b_starts = X_i.shape[0]
b_end = b_starts + X_b.shape[0]
# test files
X_i_test = torch.tensor(loadmat(f"../nonlinear/files_{test_name}/Xi.mat")["Xi"], dtype=PRECISION, requires_grad=True).to(device_string)
X_b_test = torch.tensor(loadmat(f"../nonlinear/files_{test_name}/Xb.mat")["Xb"], dtype=PRECISION, requires_grad=True).to(device_string)
test_u_true = torch.tensor(loadmat(f"../nonlinear/files_{test_name}/u.mat")["u"], dtype=PRECISION).to(device_string)
f_test = torch.tensor(loadmat(f"../nonlinear/files_{test_name}/f.mat")["f"], dtype=PRECISION, requires_grad=True).to(device_string)
g_test = torch.tensor(loadmat(f"../nonlinear/files_{test_name}/g.mat")["g"], dtype=PRECISION, requires_grad=True).to(device_string)
alpha_test = torch.tensor(loadmat(f"../nonlinear/files_{test_name}/alpha.mat")["Neucoeff"], dtype=PRECISION, requires_grad=True).to(device_string)
beta_test = torch.tensor(loadmat(f"../nonlinear/files_{test_name}/beta.mat")["Dircoeff"], dtype=PRECISION, requires_grad=True).to(device_string)
n_test = torch.tensor(loadmat(f"../nonlinear/files_{test_name}/n.mat")["n"], dtype=PRECISION, requires_grad=True).to(device_string)
test_x_i = X_i_test[:, 0].unsqueeze(dim=1)
test_y_i = X_i_test[:, 1].unsqueeze(dim=1)
test_x_b = X_b_test[:, 0].unsqueeze(dim=1)
test_y_b = X_b_test[:, 1].unsqueeze(dim=1)
test_x_tilde = torch.vstack([test_x_i, test_x_b])
test_y_tilde = torch.vstack([test_y_i, test_y_b])
test_X_tilde = torch.hstack([test_x_tilde, test_y_tilde])
test_X_b = torch.hstack([test_x_b, test_y_b])
# need to separate the spatial dimensions in X matrices for proper partial derivatives with autograd
x_i = X_i[:, 0].unsqueeze(dim=1)
y_i = X_i[:, 1].unsqueeze(dim=1)
x_b = X_b[:, 0].unsqueeze(dim=1)
y_b = X_b[:, 1].unsqueeze(dim=1)
x_g = X_g[:, 0].unsqueeze(dim=1)
y_g = X_g[:, 1].unsqueeze(dim=1)
# only compute losses on interior and boundary points
ib_idx = X_i.shape[0] + X_b.shape[0]
# define list for Trainer input
config = {
'spatial_dim': 2,
'precision': network_precision,
'activation': activation_function,
'order': 2, # activation order
'network_device': device_string,
'layers': 4,
'nodes': 50,
'epochs': 5000,
'optimizer': 'lbfgs',
'lr': lr,
}
print(f"Learning rate: {config['lr']}")
vars = {
'n': n,
'x_i': x_i,
'x_b': x_b,
'x_g': x_g,
'y_i': y_i,
'y_b': y_b,
'y_g': y_g,
'ib_idx': ib_idx,
'u_true': u_true,
'L': L,
'B': B,
'test_X_tilde': test_X_tilde,
'test_u_true': test_u_true,
'test_x_i': test_x_i,
'test_y_i': test_y_i,
'test_x_b': test_x_b,
'test_y_b': test_y_b,
'test_x_tilde': test_x_tilde,
'test_y_tilde': test_y_tilde,
'test_X_b': test_X_b,
'f_test': f_test,
'beta_test': beta_test,
'alpha_test': alpha_test,
'g_test': g_test,
'n_test': n_test,
'f': f,
'g': g,
'alpha': alpha,
'beta': beta,
'b_end': b_end,
'b_starts': b_starts,
'supervised': cur_supervised_option,
'print_interval': 10,
'verbosity': True,
}
flag = True
while flag:
trainer = Trainer(config=config, **vars)
logged_results = trainer.train()
if type(logged_results) == bool:
config['lr'] /= 2.0
print(f"Restarting with learning rate = {config['lr']}")
continue
else:
flag = False
logged_results = logged_results | config
save_results(logged_results, save_file_name)
config['lr'] = lr