-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfigure-drop.py
79 lines (70 loc) · 2.22 KB
/
figure-drop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2009 Nicolas Rougier - INRIA - CORTEX Project
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Contact: CORTEX Project - INRIA
# INRIA Lorraine,
# Campus Scientifique, BP 239
# 54506 VANDOEUVRE-LES-NANCY CEDEX
# FRANCE
def Gaussian(shape,center,sigma=0.5):
''' Return a two-dimensional gaussian with given shape.
:Parameters:
`shape` : (int,int)
Shape of the output array
`center`: (int,int)
Center of Gaussian
`sigma` : float
Width of Gaussian
'''
def g(x):
return np.exp(-x**2/sigma**2)
return fromdistance(g,shape,center)
if __name__ == '__main__':
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from network import NG,SOM,DSOM
from distribution import uniform, normal, ring
n = 4
epochs = 20000
N = 4
#np.random.seed(123)
samples = uniform(n=N)
samples[:,0] = [0,1,0,1]
samples[:,1] = [0,0,1,1]
print 'Neural Gas'
np.random.seed(123)
ng = NG((n,n,2))
ng.learn(samples,epochs)
print 'Self-Organizing Map'
np.random.seed(123)
som = SOM((n,n,2))
som.learn(samples,epochs)
print 'Dynamic Self-Organizing Map'
np.random.seed(123)
dsom = DSOM((n,n,2), elasticity=1.5)
dsom.learn(samples,epochs)
fig = plt.figure(figsize=(21,8))
axes = plt.subplot(1,3,1)
ng.plot(axes)
axes = fig.add_subplot(1,3,2)
som.plot(axes)
axes = fig.add_subplot(1,3,3)
dsom.plot(axes)
fig.savefig('test.png',dpi=150)