forked from OHDSI/PatientLevelPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
70 lines (70 loc) · 1.53 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Package: PatientLevelPrediction
Type: Package
Title: Package for patient level prediction using data in the OMOP Common Data
Model
Version: 2.0.2
Date: 2018-04-24
Author: Jenna Reps [aut],
Martijn J. Schuemie [aut, cre],
Marc A. Suchard [aut],
Patrick B. Ryan [aut],
Peter R. Rijnbeek [aut]
Maintainer: Jenna Reps <[email protected]>
Description: A package for creating patient level prediction models. Given a
cohort of interest and an outcome of interest, the package can use data in the
OMOP Common Data Model to build a large set of features. These features can then
be assessed to fit a predictive model using a number of machine learning algorithms.
Several performance measures are implemented for model evaluation.
License: Apache License 2.0
Depends:
R (>= 3.3.0),
DatabaseConnector (>= 1.11.4),
FeatureExtraction (>= 2.0.0),
Cyclops (>= 1.2.2)
Imports:
ggplot2,
gridExtra,
bit,
ff,
ffbase (>= 0.12.1),
plyr,
survAUC,
Rcpp (>= 0.11.2),
SqlRender (>= 1.1.3),
survival,
xgboost,
Matrix,
AUC,
PythonInR,
futile.options,
futile.logger,
utils,
methods,
BigKnn,
reshape2,
ReporteRs,
diagram,
shiny,
plotly,
DT,
htmlwidgets (> 0.8),
tidyr,
viridisLite,
RCurl,
RJSONIO,
keras,
slam,
magrittr
Suggests:
testthat,
pROC,
gnm,
knitr,
rmarkdown,
scoring,
Metrics,
SparseM,
ResourceSelection
LinkingTo: Rcpp
NeedsCompilation: yes
RoxygenNote: 6.0.1