-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_demo.py
474 lines (370 loc) · 30.7 KB
/
eval_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# -*- coding: utf-8 -*-
import sys, os, csv
import numpy as np
sys.path.append(os.path.realpath('./src/'))
import textgridParser
import labParser
import scoreParser
# import evaluation
import evaluation2
from filePath import *
def batch_eval(aCapella_root, dataset_path, annotation_path, segPhrase_path, segSyllable_path, score_path, recordings, tolerance, label=True):
sumDetectedBoundaries, sumGroundtruthPhrases, sumGroundtruthBoundaries, sumCorrect, sumOnsetCorrect, \
sumOffsetCorrect, sumInsertion, sumDeletion = 0 ,0 ,0 ,0 ,0 ,0, 0, 0
for i_recording, recording_name in enumerate(recordings):
groundtruth_textgrid_file = os.path.join(aCapella_root, dataset_path, annotation_path, recording_name+'.TextGrid')
phrase_boundary_lab_file = os.path.join(aCapella_root, dataset_path, segPhrase_path, recording_name+'.lab')
# syll-o-matic output
# detected_lab_file_head = os.path.join(aCapella_root, dataset_path, segSyllable_path,recording_name)
# jan output
detected_lab_file_head = os.path.join(segSyllable_path, dataset_path,recording_name)
score_file = os.path.join(aCapella_root, dataset_path, score_path, recording_name+'.csv')
groundtruth_lab_file_head = os.path.join(aCapella_root, dataset_path, groundtruth_lab_path, recording_name)
eval_result_details_file_head = os.path.join(aCapella_root, dataset_path, eval_details_path, recording_name)
if not os.path.isfile(score_file):
print 'Score not found: ' + score_file
continue
# create ground truth lab path, if not exist
if not os.path.isdir(groundtruth_lab_file_head):
os.makedirs(groundtruth_lab_file_head)
if not os.path.isdir(eval_result_details_file_head):
os.makedirs(eval_result_details_file_head)
lineList = textgridParser.textGrid2WordList(groundtruth_textgrid_file, whichTier='line')
utteranceList = textgridParser.textGrid2WordList(groundtruth_textgrid_file, whichTier='dianSilence')
# parse lines of groundtruth
nestedUtteranceLists, numLines, numUtterances = textgridParser.wordListsParseByLines(lineList, utteranceList)
# parse score
utterance_durations, bpm = scoreParser.csvDurationScoreParser(score_file)
# create the ground truth lab files
for idx,list in enumerate(nestedUtteranceLists):
if int(bpm[idx]):
print 'Creating ground truth lab ... ' + recording_name + ' phrase ' + str(idx+1)
ul = list[1]
firstStartTime = ul[0][0]
groundtruthBoundaries = [(np.array(ul_element[:2]) - firstStartTime).tolist() + [ul_element[2]] for ul_element in ul]
groundtruth_syllable_lab = groundtruth_lab_file_head+'_'+str(idx+1)+'.syll.lab'
with open(groundtruth_syllable_lab, "wb") as text_file:
for gtbs in groundtruthBoundaries:
text_file.write("{0} {1} {2}\n".format(gtbs[0],gtbs[1],gtbs[2]))
# syllable boundaries groundtruth of each line
# eval_details_csv = eval_result_details_file_head+'.csv'
# with open(eval_details_csv, 'wb') as csv_file:
# csv_writer = csv.writer(csv_file)
for idx, list in enumerate(nestedUtteranceLists):
if int(bpm[idx]):
print 'Evaluating... ' + recording_name + ' phrase ' + str(idx+1)
ul = list[1]
firstStartTime = ul[0][0]
groundtruthBoundaries = [(np.array(ul_element[:2]) - firstStartTime).tolist() + [ul_element[2]] for ul_element in ul]
detected_syllable_lab = detected_lab_file_head+'_'+str(idx+1)+'.syll.lab'
if not os.path.isfile(detected_syllable_lab):
print 'Syll lab file not found: ' + detected_syllable_lab
continue
# read boundary detected lab into python list
detectedBoundaries = labParser.lab2WordList(detected_syllable_lab, withLabel=label)
#
numDetectedBoundaries, numGroundtruthBoundaries, numCorrect, numOnsetCorrect, numOffsetCorrect, \
numInsertion, numDeletion, correct_list = evaluation2.boundaryEval(groundtruthBoundaries, detectedBoundaries, tolerance, label)
sumDetectedBoundaries += numDetectedBoundaries
sumGroundtruthBoundaries += numGroundtruthBoundaries
sumGroundtruthPhrases += 1
sumCorrect += numCorrect
sumOnsetCorrect += numOnsetCorrect
sumOffsetCorrect += numOffsetCorrect
sumInsertion += numInsertion
sumDeletion += numDeletion
if numCorrect/float(numGroundtruthBoundaries) < 0.7:
print "Detected: {0}, Ground truth: {1}, Correct: {2}, Onset correct: {3}, " \
"Offset correct: {4}, Insertion: {5}, Deletion: {6}\n".\
format(numDetectedBoundaries, numGroundtruthBoundaries,numCorrect, numOnsetCorrect,
numOffsetCorrect, numInsertion, numDeletion)
# csv_writer.writerow([recording_name+'_'+str(idx+1),
# numDetectedBoundaries,
# numGroundtruthBoundaries,
# numCorrect,
# numInsertion,
# numDeletion,
# correct_list])
return sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, \
sumOffsetCorrect, sumInsertion, sumDeletion
def stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect,
sumInsertion, sumDeletion, DB, GB, GP, C, OnC, OffC, I, D):
return sumDetectedBoundaries+DB, sumGroundtruthBoundaries+GB, sumGroundtruthPhrases+GP, sumCorrect+C, \
sumOnsetCorrect+OnC, sumOffsetCorrect+OffC, sumInsertion+I,sumDeletion+D
####---- function to insert pinyin into duration csv files
def batch_insert_pinyin_2_csv(aCapella_root, dataset_path, score_path, recordings):
for i_recording, recording_name in enumerate(recordings):
score_file = os.path.join(aCapella_root, dataset_path, score_path, recording_name+'.csv')
score_file_pinyin = os.path.join(aCapella_root, dataset_path, score_path, recording_name+'_pinyin.csv')
scoreParser.writeCsvPinyin(score_file,score_file_pinyin)
def insert_pinyin_2_csv_whole_dataset():
batch_insert_pinyin_2_csv(aCapella_root,queenMarydataset_path,score_path,queenMary_Recordings)
batch_insert_pinyin_2_csv(aCapella_root,londonRecording_path,score_path,london_Recordings)
batch_insert_pinyin_2_csv(aCapella_root,bcnRecording_path,score_path,bcn_Recordings)
def evaluation_whole_dataset(segSyllable_path,tolerance):
############################
# Evaluation #
############################
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = 0 ,0 ,0 ,0 ,0 ,0, 0, 0
# -- Female
# queen mary
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, queenMarydataset_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, queenMaryFem_Recordings, tolerance)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases,sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect,
sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion, DB, GB, GP, C, OnC, OffC, I, D)
# london
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, londonRecording_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, londonDan_Recordings, tolerance)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect,
sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion, DB, GB, GP, C, OnC, OffC, I, D)
# bcn
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, bcnRecording_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, bcnDan_Recordings, tolerance)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect,
sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion, DB, GB, GP, C, OnC, OffC, I, D)
print "Detected: {0}, Ground truth: {1}, Ground truth phrases: {2} Correct rate: {3}, Insertion rate: {4}, Deletion rate: {5}\n".\
format(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect/float(sumGroundtruthBoundaries),
sumInsertion/float(sumGroundtruthBoundaries), sumDeletion/float(sumGroundtruthBoundaries))
# -- Male
# queen mary
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, queenMarydataset_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, queenMaryMale_Recordings, tolerance)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases,sumCorrect,
sumOnsetCorrect, sumOffsetCorrect,sumInsertion, sumDeletion, DB, GB, GP, C, OnC, OffC, I, D)
# london
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, londonRecording_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, londonLaosheng_Recordings, tolerance)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect,
sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion, DB, GB, GP, C, OnC, OffC, I, D)
# bcn
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, bcnRecording_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, bcnLaosheng_Recordings, tolerance)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect,
sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion, DB, GB, GP, C, OnC, OffC, I, D)
#print sumDetectedBoundaries, sumGroundtruthBoundaries, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion
print "Detected: {0}, Ground truth: {1}, Ground truth phrases: {2} Correct rate: {3}, Insertion rate: {4}, Deletion rate: {5}\n".\
format(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect/float(sumGroundtruthBoundaries),
sumInsertion/float(sumGroundtruthBoundaries), sumDeletion/float(sumGroundtruthBoundaries))
return sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumInsertion, sumDeletion
def evaluation_test_dataset(segSyllablePath, tolerance, label):
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = 0, 0, 0, 0, 0, 0, 0, 0
# queen mary
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, queenMarydataset_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, queenMary_Recordings_test, tolerance, label)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases,
sumCorrect,
sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion, DB, GB, GP, C,
OnC, OffC, I, D)
# london
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, londonRecording_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, london_Recordings_test, tolerance, label)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases,
sumCorrect,
sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion, DB, GB, GP, C,
OnC, OffC, I, D)
# bcn
DB, GB, GP, C, OnC, OffC, I, D = batch_eval(aCapella_root, bcnRecording_path, annotation_path, segPhrase_path,
segSyllable_path, score_path, bcn_Recordings_test, tolerance, label)
sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumOnsetCorrect, sumOffsetCorrect, \
sumInsertion, sumDeletion = stat_Add(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases,
sumCorrect,
sumOnsetCorrect, sumOffsetCorrect, sumInsertion, sumDeletion, DB, GB, GP, C,
OnC, OffC, I, D)
print "Detected: {0}, Ground truth: {1}, Ground truth phrases: {2} Correct rate: {3}, Insertion rate: {4}, Deletion rate: {5}\n". \
format(sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases,
sumCorrect / float(sumGroundtruthBoundaries),
sumInsertion / float(sumGroundtruthBoundaries), sumDeletion / float(sumGroundtruthBoundaries))
return sumDetectedBoundaries, sumGroundtruthBoundaries, sumGroundtruthPhrases, sumCorrect, sumInsertion, sumDeletion
############################################
# jan jordi class weight #
############################################
if mth_ODF == 'jan':
eval_result_file_name = './eval/results/jan_deep_old_ismir_win_peakPicking/eval_result_jan_class_weight.csv'
segSyllable_path = './eval/results/jan_deep_old_ismir_win_peakPicking'
elif mth_ODF == 'jan_chan3':
eval_result_file_name = './eval/results/jan_cw_3_chans_win/eval_result_jan_class_weight.csv'
segSyllable_path = './eval/results/jan_cw_3_chans_win'
elif mth_ODF == 'jordi_horizontal_timbral':
if layer2 == 20:
eval_result_file_name = './eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_layer2_20_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
segSyllable_path = './eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_layer2_20_win'
else:
eval_result_file_name = './eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
segSyllable_path = './eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_win'
else:
# mth_ODF == 'jordi'
if fusion:
if layer2 == 20:
eval_result_file_name = './eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_multiply_layer2_20_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
segSyllable_path = './eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_multiply_layer2_20_win'
else:
eval_result_file_name = './eval/results/jordi_fusion_old+new+ismir_split_win_peakPickingMadmom/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
segSyllable_path = './eval/results/jordi_fusion_old+new+ismir_split_win_peakPickingMadmom'
else:
if filter_shape == 'temporal':
if layer2 == 20:
eval_result_file_name = './eval/results/jordi_cw_conv_dense_layer2_20_win/eval_result_jordi_class_weight_conv_dense_win.csv'
segSyllable_path = './eval/results/jordi_cw_conv_dense_layer2_20_win'
else:
# layer2 32 nodes
eval_result_file_name = './eval/results/jordi_temporal_old+new+ismir_split_win_peakPickingMadmom/eval_result_jordi_class_weight_conv_dense_win.csv'
segSyllable_path = './eval/results/jordi_temporal_old+new+ismir_split_win_peakPickingMadmom'
else:
# timbral filter shape
if layer2 == 20:
eval_result_file_name = './eval/results/jordi_cw_conv_dense_timbral_filter_layer2_20_win/eval_result_jordi_class_weight_conv_dense_timbral_filter_win.csv'
segSyllable_path = './eval/results/jordi_cw_conv_dense_timbral_filter_layer2_20_win'
else:
# layer2 32 nodes
eval_result_file_name = './eval/results/jordi_timbral_old+new+ismir_split_win_peakPickingMadmom/eval_result_jordi_class_weight_conv_dense_timbral_filter_win.csv'
segSyllable_path = './eval/results/jordi_timbral_old+new+ismir_split_win_peakPickingMadmom'
tols = [0.025,0.05,0.1,0.15,0.2,0.25,0.3]
# tols = [0.05]
with open(eval_result_file_name, 'wb') as testfile:
csv_writer = csv.writer(testfile)
for t in tols:
detected, ground_truth, ground_truth_phrases, correct, insertion, deletion = \
evaluation_test_dataset(segSyllable_path,tolerance=t, label=False)
recall,precision,F1 = evaluation2.metrics(detected,ground_truth,correct)
csv_writer.writerow([t,detected, ground_truth, ground_truth_phrases, recall,precision,F1])
# not used
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_cw/eval_result_jan_class_weight.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_cw'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_cw_3_chans_win/eval_result_jan_class_weight.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_cw_3_chans_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_cw_3_chans_layer1_70_win/eval_result_jan_class_weight.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_cw_3_chans_layer1_70_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_ncw/eval_result_jan_no_class_weight.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_ncw'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_win/eval_result_jordi_class_weight_conv_dense_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_149k_win/eval_result_jordi_class_weight_conv_dense_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_149k_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_layer2_20_win/eval_result_jordi_class_weight_conv_dense_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_layer2_20_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_timbral_filter_win/eval_result_jordi_class_weight_conv_dense_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_timbral_filter_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_timbral_filter_late_fusion_2_models_multiply_win/eval_result_jordi_class_weight_conv_dense_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_timbral_filter_late_fusion_2_models_multiply_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_timbral_filter_152k_win/eval_result_jordi_class_weight_conv_dense_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_timbral_filter_152k_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_timbral_filter_layer2_20_win/eval_result_jordi_class_weight_conv_dense_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_timbral_filter_layer2_20_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_layer2_20_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_layer2_20_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_layer2_20_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_layer2_20_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_multiply_layer2_20_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_multiply_layer2_20_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_multiply_coef_0.9_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_timbral_filter_late_fusion_multiply_coef_0.9_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_filter_late_fusion_2_models_multiply_win/eval_result_jordi_class_weight_conv_dense_horizontal_timbral_filter_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw_conv_dense_horizontal_filter_late_fusion_2_models_multiply_win'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw/eval_result_jordi_class_weight.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_cw'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_ncw/eval_result_jordi_no_class_weight.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jordi_ncw'
# eval_result_file_name = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_cw_win/eval_result_jordi_class_weight_win.csv'
# segSyllable_path = '/Users/gong/Documents/pycharmProjects/jingjuSyllabicSegmentaion/eval/results/jan_cw_win'
################################
# standard deviation #
################################
# eval_result_file_name = '/Users/gong/Documents/MTG document/Jingju arias/aCapella/eval_result.csv'
# sdevs = np.arange(0.05,1,0.05)
# dev_modes = ['constant', 'proportion']
#
# with open(eval_result_file_name, 'w') as testfile:
# csv_writer = csv.writer(testfile)
#
# for dm in dev_modes:
#
# for sdev in sdevs:
#
# segSyllable_path = 'segSyllable/viterbiSilenceWeighting/segSyllable_rong_' + dm + '_' + str(sdev)
# detected, ground_truth, ground_truth_phrases, correct_rate, insertion_rate, deletion_rate = \
# evaluation_whole_dataset(segSyllable_path)
#
# csv_writer.writerow([dm,sdev,detected, ground_truth, ground_truth_phrases, correct_rate, insertion_rate, deletion_rate])
################################
# vad duration #
################################
# eval_result_file_name = '/Users/gong/Documents/MTG document/Jingju arias/aCapella/eval_result.csv'
# vadDurs = np.arange(0.01,0.09,0.01)
#
# with open(eval_result_file_name, 'w') as testfile:
# csv_writer = csv.writer(testfile)
#
# for vadDur in vadDurs:
#
# segSyllable_path = 'segSyllable/vadDuration/segSyllable_rong_proportion' + '_' + str(0.35) + '_' + str(vadDur)
# detected, ground_truth, ground_truth_phrases, correct_rate, insertion_rate, deletion_rate = \
# evaluation_whole_dataset(segSyllable_path)
#
# csv_writer.writerow([vadDur,detected, ground_truth, ground_truth_phrases, correct_rate, insertion_rate, deletion_rate])
################################
# vad weighting #
################################
# eval_result_file_name = '/Users/gong/Documents/MTG document/Jingju arias/aCapella/eval_result_vadWeight.csv'
# vadWeights = np.arange(0.1,1.0,0.1)
#
# with open(eval_result_file_name, 'w') as testfile:
# csv_writer = csv.writer(testfile)
#
# for vadWeight in vadWeights:
#
# segSyllable_path = 'segSyllable/vadWeighting/segSyllable_rong_proportion' + '_' + str(0.35) + '_' + str(vadWeight)
# detected, ground_truth, ground_truth_phrases, correct_rate, insertion_rate, deletion_rate = \
# evaluation_whole_dataset(segSyllable_path)
#
# csv_writer.writerow([vadWeight,detected, ground_truth, ground_truth_phrases, correct_rate, insertion_rate, deletion_rate])
################################
# nicolas mean #
################################
# eval_result_file_name = '/Users/gong/Documents/MTG document/Jingju arias/aCapella/eval_result_nicolas_different_tolerence.csv'
# duration_means = np.arange(0.1,1.0,0.1)
#
# with open(eval_result_file_name, 'w') as testfile:
# csv_writer = csv.writer(testfile)
# for t in [0.05,0.1,0.15,0.2,0.25,0.3]:
#
# # for dm in duration_means:
# for dm in[0.7]:
#
# segSyllable_path = 'segSyllable_nicolas/segSyllable_nicolas' + '_' + str(dm)
# detected, ground_truth, ground_truth_phrases, correct, insertion, deletion = \
# evaluation_whole_dataset(segSyllable_path,t)
# recall,precision,F1 = evaluation2.metrics(detected,ground_truth,correct)
# csv_writer.writerow([t,detected, ground_truth, ground_truth_phrases, recall,precision,F1])
################################
# rong #
################################
# vad
# eval_result_file_name = '/Users/gong/Documents/MTG document/Jingju arias/aCapella/eval_result_rong_vad_different_tolerence_test.csv'
# segSyllable_path = 'segSyllable/vadnoAperiocityWeighting/segSyllable_rong_proportion' + '_' + str(0.35) + '_' + str(0.2)
# no vad
# eval_result_file_name = '/Users/gong/Documents/MTG document/Jingju arias/aCapella/eval_result_rong_novad_different_tolerence_test.csv'
# segSyllable_path = 'segSyllable/vadnoAperiocityWeighting/segSyllable_rong_proportion' + '_' + str(0.35) + '_' + str(1)
#
# tols = [0.025, 0.05,0.1,0.15,0.2,0.25,0.3]
#
# with open(eval_result_file_name, 'wb') as testfile:
# csv_writer = csv.writer(testfile)
# for t in tols:
# detected, ground_truth, ground_truth_phrases, correct, insertion, deletion = \
# evaluation_test_dataset(segSyllable_path,tolerance=t)
# recall,precision,F1 = evaluation2.metrics(detected,ground_truth,correct)
# csv_writer.writerow([t,detected, ground_truth, ground_truth_phrases, recall,precision,F1])