-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathplot_results.py
96 lines (77 loc) · 2.33 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from __future__ import print_function
import os, platform, sys, subprocess
import numpy as np
import matplotlib.pyplot as plt
plt.rcdefaults()
# eigen/blaze/fastor/armadillo/xtensor
# double 100
# 0.13622926
# 0.1312754
# 0.115669
# 0.43718526
# 0.78880578
# double 150
# 0.80114001
# 0.6937311
# 0.712709050
# 2.299045
# 3.5829124
# double 200
# 2.406574
# 2.379607
# 2.19099700
# 6.522
# 11.1189
# single 100
# 0.0807457
# 0.28706351
# 0.0723373
# 0.41288866
# 0.76346416
# single 150
# 0.52801878
# 1.5160282
# 0.43575986
# 2.2451304
# 3.8300779
def run_command(command):
p = subprocess.Popen(command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
shell=True)
return iter(p.stdout.readline, b'')
def main():
num_iter = 50
exes = ["./out_cpp_eigen.exe", "./out_cpp_blaze.exe", "./out_cpp_fastor.exe", "./out_cpp_armadillo.exe", "./out_cpp_xtensor.exe"]
performance = []
for exe in exes:
mean_elapsed = 0.
for i in range(num_iter):
for counter, line in enumerate(run_command(exe + " 100")):
if counter == 2:
line = str(line)
sline = line.split(" ")[4]
elapsed = float(sline)
mean_elapsed += elapsed
mean_elapsed /= float(num_iter)
print(mean_elapsed, )
performance.append(mean_elapsed)
performance = np.array(performance)
# return
# with hand-written norms for arma and xtensor
# performance = [0.13681212, 0.1312151, 0.115669, 0.43759528, 0.73877798] # double 100
# performance = [0.80114001, 0.6937311, 0.712709050, 2.299045, 3.5829124] # double 150
# performance = [2.406574, 2.379607, 2.19099700, 6.522, 11.1189] # double 200
# performance = [2.406574, 2.379607, 2.19099700, 87.1129, 59.4571] # double 200 lapack
# performance = [4.49, 6.73, 2.54, 3.45, 13.77] # compilation time
# objects = ('Eigen', 'Blaze', 'Fastor')
objects = ('Eigen', 'Blaze', 'Fastor', 'Armadillo', 'XTensor')
y_pos = np.arange(len(objects))
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects)
plt.ylabel('Time in seconds')
plt.title('Performance of views')
# plt.title('Compilation time of views')
plt.grid(True)
plt.show()
main()