-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMoreAgda.lagda
236 lines (176 loc) · 6.33 KB
/
MoreAgda.lagda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
\chapter{More About Agda}
This chapter introduces some features involving Agda's pattern matching mechanism that,
together, allow us to prove many more theorems about the functional programs we are writing.
%if False
\begin{code}
module MoreAgda where
open import Basics hiding (_*_)
open import Lists hiding (rev; length;snoc)
open import Poly
\end{code}
%endif
\section{Using Hypothesis and Theorems}
We often encounter situations where the goal to be proved is exactly the same as some
hypothesis in the context or some previously proved lemma.
\begin{code}
Eq : {l : Level}(A : Set l) -> A -> A -> Set l
Eq {l} A x y = _==_ {l} {A} x y
NListEq : List Nat -> List Nat -> Set
NListEq l1 l2 = Eq (List Nat) l1 l2
Silly1 : (n o m p : Nat) -> Set
Silly1 n o m p = n == m -> t1 -> t2
where
t1 = NListEq (n , o , nil) (n , p , nil)
t2 = NListEq (n , o , nil) (m , p , nil)
silly1 : forall (n m o p : Nat) -> Silly1 n o m p
silly1 n m o p nm rewrite nm = id
\end{code}
\begin{code}
Hyp : Nat -> Nat -> Set
Hyp o p = forall (q r : Nat) -> q == r -> t q r
where
t : Nat -> Nat -> Set
t q r = NListEq (q , o , nil) (r , p , nil)
Silly2 : (n m o p : Nat) -> Set
Silly2 n m o p = n == m -> Hyp o p -> t
where
t = NListEq (n , o , nil) (m , p , nil)
silly2 : forall (n m o p : Nat) -> Silly2 n m o p
silly2 n m o p nm hyp = hyp n m nm
\end{code}
\begin{code}
NPairEq : (n m o p : Nat) -> Set
NPairEq n m o p = Eq (Nat * Nat) (n , m) (o , p)
Hyp2a : Set
Hyp2a = forall (q r : Nat) -> NPairEq q q r r -> NListEq (q , nil) (r , nil)
Silly2a : Nat -> Nat -> Set
Silly2a n m = NPairEq n n m m -> Hyp2a -> NListEq (n , nil) (m , nil)
silly2a : forall (n m : Nat) -> Silly2a n m
silly2a .m m refl hyp = refl
\end{code}
The next is a exercice
\begin{code}
SillyEx : Set
SillyEx = forall (n : Nat) -> evenb n == True -> oddb (suc n) == True
sillyEx : SillyEx -> evenb 3 == True -> oddb 4 == True
sillyEx silly = silly (suc (suc (suc zero)))
\end{code}
\begin{code}
silly3 : forall (n : Nat) -> True == beqNat n 5 -> beqNat (suc (suc n)) 7 == True
silly3 n = sym
\end{code}
Another exercice. Need revInvolutive property.
\begin{code}
revExercice1 : forall (l l' : List Nat) -> l == rev l' -> l' == rev l
revExercice1 l l' = {!!}
\end{code}
These next examples are used to justify the apply with tactic.
\begin{code}
transEqExample : forall (a b c d e f : Nat) -> NListEq (a , b , nil) (c , d , nil) ->
NListEq (c , d , nil) (e , f , nil) ->
NListEq (a , b , nil) (e , f , nil)
transEqExample a b .a .b .a .b refl refl = refl
\end{code}
Now, using |trans|.
\begin{code}
transEqExample' : forall (a b c d e f : Nat) -> NListEq (a , b , nil) (c , d , nil) ->
NListEq (c , d , nil) (e , f , nil) ->
NListEq (a , b , nil) (e , f , nil)
transEqExample' a b c d e f eq1 eq2 = trans eq1 eq2
\end{code}
\section{Inversion}
Explanation. Pattern matching and emacs mode rocks.
\begin{code}
eqAddSuc : forall {n m : Nat} -> suc n == suc m -> n == m
eqAddSuc refl = refl
\end{code}
\begin{code}
silly4 : forall (n m : Nat) -> NListEq (n , nil) (m , nil) -> n == m
silly4 .m m refl = refl
\end{code}
\begin{code}
silly5 : forall (n m o : Nat) -> NListEq (n , m , nil) (o , o , nil) -> NListEq (n , nil) (m , nil)
silly5 .o .o o refl = refl
\end{code}
now starts sillyex1. Need to explain absurd patterns.
\begin{code}
sillyex1 : forall {l}(A : Set l)(x y z : A)(l j : List A) -> Eq (List A) (x , y , l) (z , j) ->
Eq (List A) (y , l) (x , j) ->
x == y
sillyex1 A .z y z l1 .(y , l1) refl ()
\end{code}
\begin{code}
silly6 : forall (n : Nat) -> suc n == 0 -> 2 + 2 == 5
silly6 n ()
silly7 : forall (n m : Nat) -> True == False -> NListEq (n , nil) (m , nil)
silly7 n m ()
\end{code}
silly ex2
\begin{code}
sillyex2 : forall {l}{A : Set l}(x y z : A)(l j : List A) ->
Eq (List A) (x , y , l) nil ->
Eq (List A) (y , l) (z , j) ->
x == z
sillyex2 x y z l j ()
\end{code}
\begin{spec}
cong : forall {A B : Set} (f : A -> B){x y : A} -> x == y -> f x == f y
cong f {x} {.x} refl = refl
\end{spec}
\begin{code}
lengthSnoc' : forall {A : Set}(v : A)(l : List A)(n : Nat) ->
length l == n -> length (snoc v l) == suc n
lengthSnoc' v nil n h1 = cong suc h1
lengthSnoc' v (x , l) zero ()
lengthSnoc' v (x , l) (suc n) p = cong suc (lengthSnoc' v l n (eqAddSuc p))
\end{code}
\begin{code}
beqNat0L : forall (n : Nat) -> beqNat 0 n == True -> n == 0
beqNat0L zero refl = refl
beqNat0L (suc n) ()
beqNat0R : forall (n : Nat) -> beqNat n 0 == True -> n == 0
beqNat0R zero refl = refl
beqNat0R (suc n) ()
\end{code}
\section{Using Tactics on Hypothesis}
\begin{code}
sucInj : forall (n m : Nat)(b : Bool) -> beqNat (suc n) (suc m) == b -> beqNat n m == b
sucInj n m b p = p
\end{code}
\begin{code}
Silly3' : Nat -> Set
Silly3' n = (beqNat n 5 == True -> beqNat (suc (suc n)) 7 == True) ->
True == beqNat n 5 -> True == beqNat (suc (suc n)) 7
silly3' : forall (n : Nat) -> Silly3' n
silly3' n h p = p
\end{code}
an exercice
\begin{code}
plusNSucM : forall (n m : Nat) -> suc (n + m) == n + suc m
plusNSucM = {!!}
plusInjNN : forall (n m : Nat) -> n + n == m + m -> n == m
plusInjNN zero zero p = refl
plusInjNN zero (suc m) ()
plusInjNN (suc n) zero ()
plusInjNN (suc n) (suc m) p rewrite (sym (plusNSucM n n)) | (sym (plusNSucM m m))
= cong suc (plusInjNN n m (eqAddSuc (eqAddSuc p)))
\end{code}
\section{Varying the Induction Hypothesis}
\begin{code}
double : Nat -> Nat
double zero = zero
double (suc n) = suc (suc (double n))
doubleInj : forall (n m : Nat) -> double n == double m -> n == m
doubleInj zero zero h = refl
doubleInj zero (suc m) ()
doubleInj (suc n) zero ()
doubleInj (suc n) (suc m) h = cong suc (doubleInj _ _ (eqAddSuc (eqAddSuc h)))
\end{code}
exercice
\begin{code}
beqNatTrue : forall (n m : Nat) -> beqNat n m == True -> n == m
beqNatTrue zero zero h = refl
beqNatTrue zero (suc m) ()
beqNatTrue (suc n) zero ()
beqNatTrue (suc n) (suc m) h = cong suc (beqNatTrue n m h)
\end{code}