-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path00_train.py
396 lines (354 loc) · 15.6 KB
/
00_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
"""
00_train.py
学習用プログラム。
"""
# 一般
import os
import time
import random
import shutil, os
import numpy as np
from tqdm import tqdm
# pytorch関連
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter # tensorboard
# 自作プログラムの読込
from my_args import get_parser
from my_utils import my_util
from my_models import my_fc
from my_datasets import my_image_dataset
# from my_transform import ImageTransform
# from my_dataset import RecipeDataset
# from my_model import Im2RecipeNet
# コマンドライン===============================================================
parser = get_parser()
opts = parser.parse_args() # opts.xxx でxxxのパラメータの呼び出し
# =============================================================================
'''
初期条件確認
'''
print("LOG : 開始現在 ", time.strftime("%Y/%m/%d %H:%M:%S", time.strptime(time.ctime())))
start_time = time.time()
print("- - - - - - - - - -")
# tensorboard準備
if not opts.no_check: my_util.check_file(opts.tensorboard)
writer = SummaryWriter(log_dir=opts.tensorboard) # tbxのインスタンス生成.フォルダ自動生成
print("FILE : ",opts.tensorboard,"を作成しました.")
print("INFO : tensorboard path -> ", opts.tensorboard)
# モデルの保存用フォルダの作成
if not opts.no_check: my_util.check_file(opts.checkpoint)
os.makedirs(opts.checkpoint, exist_ok=True)
print("FILE : ", opts.checkpoint, "を作成しました.")
print("INFO : checkpoint path -> ", opts.checkpoint)
# GPU確認
if not(torch.cuda.device_count()):
DEVICE = torch.device(*('cpu',0))
else:
torch.cuda.manual_seed(opts.seed)
DEVICE = torch.device(*('cuda',0))
if opts.cpu:
DEVICE = "cpu"
print("INFO : 使用するデバイス -> ", DEVICE)
# cudnnの自動チューナー:場合によって速くなったり遅くなったり(入力サイズが常に一定だといいらしいが)
cudnn.benchmark = True
print("LOG : 初期確認終了 経過時間:{:.2f}".format(time.time()-start_time))
print("- - - - - - - - - -")
'''
モデル定義
'''
print("LOG : モデル定義開始...")
# モデル定義
model = my_fc.FCNet().to(DEVICE, non_blocking=True)
print(model)
# Loss関数定義
cosine_crit = nn.CosineEmbeddingLoss(0.1).to(DEVICE)
# Loss関数定義
criterion = nn.CrossEntropyLoss()
# optimizer定義
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, eps=1e-08, weight_decay=0)
# # optimizer定義
# # # creating different parameter groups
# vision_params = list(map(id, model.visionMLP.parameters()))
# base_params = filter(lambda p: id(p) not in vision_params, model.parameters())
# # optimizer = torch.optim.Adam(model.parameters(), lr=LARNING_RATE, eps=1e-08, weight_decay=WEIGHT_DECAY)
# optimizer = torch.optim.Adam([
# {'params': base_params},
# {'params': model.visionMLP.parameters(), 'lr': LARNING_RATE*FREEVISION }
# ], lr=LARNING_RATE*FREERECIPE)
# 保存したものがあれば呼び出す
print("LOG : checkpointの呼び出し...")
if opts.resume:
if os.path.isfile(opts.resume):
print("=> loading checkpoint '{}'".format(opts.resume))
checkpoint = torch.load(opts.resume)
START_EPOCH = checkpoint['epoch']
best_val = checkpoint['best_val']
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print("=> loaded checkpoint '{}' (epoch {})".format(opts.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(opts.resume))
best_val = float('inf')
else:
best_val = float('inf')
print("=> no checkpoint found")
# モデルは検証データで一番良かったときのみ保存する
valtrack = 0
print("LOG : モデル定義終了 経過時間:{:.2f}".format(time.time()-start_time))
print("- - - - - - - - - -")
'''
データローダー定義
'''
transform = None
print("LOG : データローダー定義...")
# 学習データ
print("INFO : data path -> " , opts.data_path)
trainset = my_image_dataset.ImageDataset(os.path.join(opts.data_path, opts.train_file),
transform=image_transform, phase="train")
trainloader = torch.utils.data.DataLoader(trainset, batch_size=opts.batch_size,
shuffle=True, num_workers=opts.workers, pin_memory=True)
print('LOG : Training loader prepared.')
# # 学習データ
# print("INFO : train_data = " , os.path.join(opts.data_path, "valid/menu.csv"))
# trainset = RecipeDataset(os.path.join(opts.data_path, "valid"),
# os.path.join(IMG_PATH, "valid_image"),
# transform=image_transform, phase="train",
# sem_reg=opts.semantic_reg)
# trainloader = torch.utils.data.DataLoader(trainset, batch_size=opts.batch_size,
# shuffle=True, num_workers=opts.workers, pin_memory=True)
# print('LOG : Training loader prepared.')
# 検証用データ
validset = my_image_dataset.ImageDataset(os.path.join(opts.data_path, opts.valid_file),
transform=image_transform, phase="train")
validloader = torch.utils.data.DataLoader(validset, batch_size=opts.batch_size,
shuffle=False, num_workers=opts.workers, pin_memory=True)
print('LOG : Validation loader prepared.')
'''
学習ループ定義
'''
# 学習用関数(1epoch)
def one_train(loader, model, criterion, optimizer, epoch):
print("LOG : training phase , epoch = ", epoch)
# 各値初期化
cos_losses = AverageMeter()
if opts.semantic_reg:
img_losses = AverageMeter()
rec_losses = AverageMeter()
data_num = len(loader.dataset) # テストデータの総数
pbar = tqdm(total=int(data_num/opts.batch_size)) # プログレスバー設定
# 学習開始
model.train() # モデルを学習モードに設定
for batch, (inputs, targets) in enumerate(loader):
# データをdeviceに載せる (image, inst, len(inst), ingr, len(ingr)), [target, img_class, rec_class]
input_var = [data.to(DEVICE, non_blocking=True) for data in inputs]
target_var = [data.to(DEVICE, non_blocking=True) for data in targets]
outputs = model(input_var[0], input_var[1], input_var[2], input_var[3], input_var[4]) # モデルから出力を得る
# Lossの計算 カテゴリ分類のあるなしで場合分け
if SEMANTIC_REG:
cos_loss = criterion[0](outputs[0], outputs[1], target_var[0].float())
img_loss = criterion[1](outputs[2], target_var[1])
rec_loss = criterion[1](outputs[3], target_var[2])
# combined loss
loss = opts.cos_weight * cos_loss +\
opts.cls_weight * img_loss +\
opts.cls_weight * rec_loss
# measure performance and record losses
cos_losses.update(cos_loss.data, inputs[0].size(0))
img_losses.update(img_loss.data, inputs[0].size(0))
rec_losses.update(rec_loss.data, inputs[0].size(0))
else:
loss = criterion(outputs[0], outputs[1], target_var[0])
# measure performance and record loss
cos_losses.update(loss.data[0], inputs[0].size(0))
optimizer.zero_grad() # 勾配の初期化
loss.backward() # 勾配の計算
optimizer.step() # パラメータの更新
pbar.update(1)
pbar.close()
if opts.semantic_reg:
print('Epoch: {0}\t'
'cos loss:{cos_loss.val:.4f} ({cos_loss.avg:.4f}) '
'img Loss:{img_loss.val:.4f} ({img_loss.avg:.4f}) '
'rec loss:{rec_loss.val:.4f} ({rec_loss.avg:.4f}) '
'vision_lr:({visionLR})-recipe_lr:({recipeLR}) '.format(
epoch, cos_loss=cos_losses, img_loss=img_losses,
rec_loss=rec_losses, visionLR=optimizer.param_groups[1]['lr'],
recipeLR=optimizer.param_groups[0]['lr']))
else:
print('Epoch: {0}\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'vision ({visionLR}) - recipe ({recipeLR})\t'.format(
epoch, loss=cos_losses, visionLR=optimizer.param_groups[1]['lr'],
recipeLR=optimizer.param_groups[0]['lr']))
return cos_losses.val, img_losses.val, rec_losses.val
'''
検証ループ定義
'''
# 検証用関数(1epoch)
def one_valid(loader, model, criterion):
print("LOG : validation phase")
model.eval() # モデルを推論モードに設定
correct = 0 # 正解率計算用の変数を宣言
total_loss = 0.0 # 1epochの損失合計
data_num = len(loader.dataset) # テストデータの総数
pbar = tqdm(total=int(data_num/opts.batch_size)) # プログレスバー設定
with torch.no_grad(): # 推論時には勾配は不要(メモリ節約)
for i, (inputs, targets) in enumerate(loader):
# データをdeviceに載せる (image, inst, len(inst), ingr, len(ingr)), [target, img_id, rec_id]
input_var = [data.to(DEVICE, non_blocking=True) for data in inputs]
target_var = [data.to(DEVICE, non_blocking=True) for data in targets[:-2]]
outputs = model(input_var[0], input_var[1], input_var[2], input_var[3], input_var[4]) # モデルから出力を得る
if i==0:
data0 = outputs[0].data.cpu().numpy()
data1 = outputs[1].data.cpu().numpy()
data2 = targets[-2]
data3 = targets[-1]
else:
data0 = np.concatenate((data0,outputs[0].data.cpu().numpy()),axis=0)
data1 = np.concatenate((data1,outputs[1].data.cpu().numpy()),axis=0)
data2 = np.concatenate((data2,targets[-2]),axis=0)
data3 = np.concatenate((data3,targets[-1]),axis=0)
pbar.update(1)
pbar.close()
medR, recall = rank(opts, data0, data1, data2) # img_embeds, rec_embeds, rec_ids
print('Val medR:{medR:.4f}' ' Recall:{recall}'.format(medR=medR, recall=recall))
return (medR, recall) # 各バッチごとのlossの平均
'''
その他定義
'''
def rank(opts, img_embeds, rec_embeds, rec_ids):
random.seed(opts.seed)
type_embedding = opts.embtype # default : "image"
im_vecs = img_embeds # data0
instr_vecs = rec_embeds # data1
names = rec_ids # data2
# Sort based on names to always pick same samples for medr
idxs = np.argsort(names)
names = names[idxs]
# Ranker
N = opts.medr
idxs = range(N)
glob_rank = []
glob_recall = {1:0.0,5:0.0,10:0.0}
for i in range(10):
ids = random.sample(range(0,len(names)), N)
im_sub = im_vecs[ids,:]
instr_sub = instr_vecs[ids,:]
ids_sub = names[ids]
# if params.embedding == 'image':
if type_embedding == 'image':
sims = np.dot(im_sub,instr_sub.T) # for im2recipe
else:
sims = np.dot(instr_sub,im_sub.T) # for recipe2im
med_rank = []
recall = {1:0.0,5:0.0,10:0.0}
for ii in idxs:
name = ids_sub[ii]
# get a column of similarities
sim = sims[ii,:]
# sort indices in descending order
sorting = np.argsort(sim)[::-1].tolist()
# find where the index of the pair sample ended up in the sorting
pos = sorting.index(ii)
if (pos+1) == 1:
recall[1]+=1
if (pos+1) <=5:
recall[5]+=1
if (pos+1)<=10:
recall[10]+=1
# store the position
med_rank.append(pos+1)
for i in recall.keys():
recall[i]=recall[i]/N
med = np.median(med_rank)
# print "median", med
for i in recall.keys():
glob_recall[i]+=recall[i]
glob_rank.append(med)
for i in glob_recall.keys():
glob_recall[i] = glob_recall[i]/10
return np.average(glob_rank), glob_recall
# modelのパラメータ保存はval_lossがよくなったときだけ
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
filename = CHECKPOINT + 'epoch%03d_val%.3f.pth.tar' % (state['epoch'],state['best_val'])
if is_best:
torch.save(state, filename)
# 平均と現在の値を計算して保存するクラス
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
# 学習率lrの適用
def adjust_learning_rate(optimizer, epoch, opts):
"""Switching between modalities"""
# parameters corresponding to the rest of the network
optimizer.param_groups[0]['lr'] = opts.lr * opts.freeRecipe
# parameters corresponding to visionMLP
optimizer.param_groups[1]['lr'] = opts.lr * opts.freeVision
print('Initial base params lr: %f' % optimizer.param_groups[0]['lr'])
print('Initial vision lr: %f' % optimizer.param_groups[1]['lr'])
# after first modality change we set patience to 3 : d3
PATIENCE = 2
'''
学習開始
'''
print("LOG : 未学習時のモデル性能検証...")
# 未学習時のモデルの性能の検証
valid_result = one_valid(validloader, model, criterion)
# 学習開始
print("\n\n")
print("LOG : 学習開始...epoch", EPOCH, "まで")
for epoch in range(START_EPOCH, EPOCH+1):
cos_loss, img_loss, rec_loss = one_train(trainloader, model, criterion, optimizer, epoch)
valid_medr, valid_recall = one_valid(validloader, model, criterion)
write_tbx(epoch, cos_loss, img_loss, rec_loss, valid_medr, valid_recall)
# val_lossがよくならないのがpatience回続いたら学習するモダリティの変更
if valid_medr >= best_val: valtrack += 1
else: valtrack = 0
if valtrack >= PATIENCE:
# we switch modalities
opts.freeVision = opts.freeRecipe; opts.freeRecipe = not(opts.freeVision)
# change the learning rate accordingly
adjust_learning_rate(optimizer, epoch, opts)
valtrack = 0
# best modelの保存
is_best = valid_medr < best_val # ロスが小さくなったか
best_val = min(valid_medr, best_val) # 最高値の更新
save_checkpoint({ # modelの保存
'epoch': epoch,
'model_state_dict': model.state_dict(),
'best_val': best_val,
'optimizer_state_dict': optimizer.state_dict(),
'valtrack': valtrack,
'freeVision': opts.freeVision,
'valid_medr': valid_medr
}, is_best)
print('Validation: %f (best) - %d (valtrack)' % (best_val, valtrack))
print("- - - - - - - - - - - - - - - - - - - - -")
'''
後処理
'''
writer.close() # tbxをclose
'''
グラフは以下で確認可能
tensorboard --logdir="./tbX"
'''
print("LOG : Finish!!")