-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans_mod.m
63 lines (59 loc) · 1.62 KB
/
kmeans_mod.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
% =====================================================================%
%Note: %
%This is a subfunction from the Proposed OCR Algorithm for clustering %
%a grayscaled image into 2 intensities intended for image binarization %
% ---------------------------------------------------------------------%
%u=raw image
%M=number of clusters
function [c,a] = kmeans_mod(u,M)
itmax = 1000;
U = sort(double(u(:)));
L = length(U);
M = min(M,L);
dU = U(2:L) - U(1:(L-1));
[dUs,dUi] = sort(dU,'descend');
b = sort(dUi(1:(M-1)));
b = [0,b(:)',L];
a = zeros(M,1);
for m=1:M
a(m) = mean(U((b(m)+1):b(m+1)));
end
chi = zeros(size(u));
for it=1:itmax
avail = ones(size(u));
as = a;
for m=1:M
psi = avail;
for n=1:M
if (n ~= m)
psi = psi.*(abs(u - a(m)) <= abs(u - a(n)));
end
end
dom = find(psi);
if (~isempty(dom))
chi(dom) = m;
avail(dom) = 0;
end
end
for m=1:M
dom = find(chi == m);
if (~isempty(dom))
a(m) = mean(u(dom));
else
a(m) = 0;
end
end
if (max(abs(a-as)) == 0)
break;
end
end
if (it >= itmax)
warning('Maximum number of iterations reached in kmeans!');
end
c = zeros(size(u));
for m=1:M
dom = find(chi == m);
if (~isempty(dom))
c(dom) = a(m);
end
end