Skip to content
This repository has been archived by the owner on Nov 3, 2023. It is now read-only.

TuneReportCheckpointCallback error #219

Open
jakubMitura14 opened this issue Sep 27, 2022 · 2 comments
Open

TuneReportCheckpointCallback error #219

jakubMitura14 opened this issue Sep 27, 2022 · 2 comments

Comments

@jakubMitura14
Copy link

jakubMitura14 commented Sep 27, 2022

cross referencing from https://discuss.ray.io/t/checkpointing-errors-on-complex-models/7637/4
While using TuneReportCheckpointCallback I get

Trial returned a result which did not include the specified metric

When using TuneReportCallback such error do not occur

pytorch-lightning 1.6.5
ray 2.0.0
ray-lightning 0.3.0

full list of python packages
https://docs.google.com/document/d/1PlgcDDYKZ9qB-7YioISuEOFIfWpTk1xFYFA2dW4yqUo/edit

As indicated in part of the code with stars *** TuneReportCheckpointCallback gives error when TuneReportCallback do not

minimal working example not finding metrics becouse of checkpointing

code

"""Simple example using RayAccelerator and Ray Tune"""
import functools
import glob
import importlib.util
import math
import multiprocessing as mp
import operator
import os
import shutil
import sys
import tempfile
import time
import warnings
from datetime import datetime
from functools import partial
from glob import glob
from os import path as pathOs
from os.path import basename, dirname, exists, isdir, join, split
from pathlib import Path
#from picai_eval.picai_eval import evaluate_case
from statistics import mean
from typing import List, Optional, Sequence, Tuple, Union

import gdown
import matplotlib.pyplot as plt
import monai
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import ray
import seaborn as sns
import SimpleITK as sitk
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchio
import torchio as tio
import torchmetrics
from pl_bolts.datamodules.mnist_datamodule import MNISTDataModule
from pytorch_lightning import (Callback, LightningDataModule, LightningModule,
                               Trainer)
from pytorch_lightning.strategies import Strategy
from ray import air, tune
from ray.air import session
from ray.tune import CLIReporter
from ray.tune.integration.pytorch_lightning import (
    TuneReportCallback, TuneReportCheckpointCallback)
from ray.tune.schedulers import ASHAScheduler, PopulationBasedTraining
from ray_lightning import RayShardedStrategy, RayStrategy
from ray_lightning.tune import TuneReportCallback, get_tune_resources
from report_guided_annotation import extract_lesion_candidates
from scipy.ndimage import gaussian_filter
from sklearn.model_selection import train_test_split
from torch.nn.intrinsic.qat import ConvBnReLU3d
from torch.utils.cpp_extension import load
from torch.utils.data import DataLoader, Dataset, random_split
from torchmetrics import Precision
from torchmetrics.functional import precision_recall

ray.init(num_cpus=24)
data_dir = '/home/sliceruser/mnist'
MNISTDataModule(data_dir=data_dir).prepare_data()
num_cpus_per_worker=6
test_l_dir = '/home/sliceruser/test_l_dir'

class netaA(nn.Module):
    def __init__(self,
        config
    ) -> None:
        super().__init__()
        layer_1, layer_2 = config["layer_1"], config["layer_2"]
        self.model = nn.Sequential(
        torch.nn.Linear(28 * 28, layer_1),
        torch.nn.Linear(layer_1, layer_2),    
        torch.nn.Linear(layer_2, 10)
        )
    def forward(self, x):
        return self.model(x)



class LightningMNISTClassifier(pl.LightningModule):
    def __init__(self, config, data_dir=None):
        super(LightningMNISTClassifier, self).__init__()

        self.data_dir = data_dir or os.getcwd()
        self.lr = config["lr"]
        self.batch_size = config["batch_size"]

        self.accuracy = torchmetrics.Accuracy()
        self.netA= netaA(config)

    def forward(self, x):
        batch_size, channels, width, height = x.size()
        x = x.view(batch_size, -1)
        x= self.netA(x)

        x = F.log_softmax(x, dim=1)
        return x

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=self.lr)

    def training_step(self, train_batch, batch_idx):
        x, y = train_batch
        logits = self.forward(x)
        loss = F.nll_loss(logits, y.long())
        acc = self.accuracy(logits, y)
        self.log("ptl/train_loss", loss)
        self.log("ptl/train_accuracy", acc)
        return loss

    def validation_step(self, val_batch, batch_idx):
        x, y = val_batch
        logits = self.forward(x)
        loss = F.nll_loss(logits, y.long())
        acc = self.accuracy(logits, y)
        return {"val_loss": loss, "val_accuracy": acc}

    def validation_epoch_end(self, outputs):
        avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
        avg_acc = torch.stack([x["val_accuracy"] for x in outputs]).mean()
        self.log("ptl/val_loss", avg_loss)
        self.log("ptl/val_accuracy", avg_acc)



def train_mnist(config,
                data_dir=None,
                num_epochs=10,
                num_workers=1,
                use_gpu=True,
                callbacks=None):

    model = LightningMNISTClassifier(config, data_dir)

    callbacks = callbacks or []
    print(" aaaaaaaaaa  ")
    trainer = pl.Trainer(
        max_epochs=num_epochs,
        callbacks=callbacks,
        progress_bar_refresh_rate=0,
        strategy=RayStrategy(
            num_workers=num_workers, use_gpu=use_gpu))#, init_hook=download_data
    dm = MNISTDataModule(
        data_dir=data_dir, num_workers=2, batch_size=config["batch_size"])
    trainer.fit(model, dm)


def tune_mnist(data_dir,
               num_samples=2,
               num_epochs=10,
               num_workers=2,
               use_gpu=True):
    config = {
        "layer_1": tune.choice([32, 64, 128]),
        "layer_2": tune.choice([64, 128, 256]),
        "lr": tune.loguniform(1e-4, 1e-1),
        "batch_size": tune.choice([32, 64, 128]),
    }

    metrics = {"loss": "ptl/val_loss", "acc": "ptl/val_accuracy"}
   
   #***********************************************
    #do not work
    callbacks = [TuneReportCheckpointCallback(metrics, on="validation_end",filename="checkpointtt")]
    
    #works
    #callbacks = [TuneReportCallback(metrics, on="validation_end")]
 
    #***********************************************

 
 
    trainable = tune.with_parameters(
        train_mnist,
        data_dir=data_dir,
        num_epochs=num_epochs,
        num_workers=num_workers,
        use_gpu=use_gpu,
        callbacks=callbacks)
    analysis = tune.run(
        trainable,
        metric="loss",
        mode="min",
        config=config,
        num_samples=num_samples,
        resources_per_trial=get_tune_resources(
            num_workers=num_workers, use_gpu=use_gpu),
        name="tune_mnist")

    print("Best hyperparameters found were: ", analysis.best_config)

tune_mnist(data_dir)

full error
https://docs.google.com/document/d/17bcUZOQsJZipf0nkRr2uRiDCkekYia5uHbm0niqLyHM/edit?usp=sharing

@mreyarea-fy
Copy link

Hey,

Any updates on this? Were you able to solve it?

@jakubMitura14
Copy link
Author

No, frankly because I could not I migrated to pure optuna

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants