-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain.py
199 lines (162 loc) · 6.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import argparse
import logging
import os
import random
import timeit
from datetime import datetime
import torch
import wandb
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger, TensorBoardLogger
from pytorch_lightning.utilities.seed import seed_everything
from src.genie.data_module import RAMSDataModule
from src.genie.ACE_data_module import ACEDataModule
from src.genie.KAIROS_data_module import KAIROSDataModule
from src.genie.model import GenIEModel
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model",
type=str,
required=True,
choices=['gen','constrained-gen']
)
parser.add_argument(
"--dataset",
type=str,
required=True,
choices=['RAMS', 'ACE', 'KAIROS']
)
parser.add_argument('--tmp_dir', type=str)
parser.add_argument(
"--ckpt_name",
default=None,
type=str,
help="The output directory where the model checkpoints and predictions will be written.",
)
parser.add_argument(
"--load_ckpt",
default=None,
type=str,
)
parser.add_argument(
"--train_file",
default=None,
type=str,
help="The input training file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--val_file",
default=None,
type=str,
help="The input evaluation file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
'--test_file',
type=str,
default=None,
)
parser.add_argument('--input_dir', type=str, default=None)
parser.add_argument('--coref_dir', type=str, default='data/kairos/coref_outputs')
parser.add_argument('--use_info', action='store_true', default=False, help='use informative mentions instead of the nearest mention.')
parser.add_argument('--mark_trigger', action='store_true')
parser.add_argument('--sample-gen', action='store_true', help='Do sampling when generation.')
parser.add_argument("--train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--eval_only", action="store_true",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--gradient_clip_val", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--gpus", default=-1, help='-1 means train on all gpus')
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
args = parser.parse_args()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Set seed
seed_everything(args.seed)
logger.info("Training/evaluation parameters %s", args)
if not args.ckpt_name:
d = datetime.now()
time_str = d.strftime('%m-%dT%H%M')
args.ckpt_name = '{}_{}lr{}_{}'.format(args.model, args.train_batch_size * args.accumulate_grad_batches,
args.learning_rate, time_str)
args.ckpt_dir = os.path.join(f'./checkpoints/{args.ckpt_name}')
os.makedirs(args.ckpt_dir)
checkpoint_callback = ModelCheckpoint(
dirpath=args.ckpt_dir,
save_top_k=2,
monitor='val/loss',
mode='min',
save_weights_only=True,
filename='{epoch}', # this cannot contain slashes
)
lr_logger = LearningRateMonitor()
tb_logger = TensorBoardLogger('logs/')
model = GenIEModel(args)
if args.dataset == 'RAMS':
dm = RAMSDataModule(args)
elif args.dataset == 'ACE':
dm = ACEDataModule(args)
elif args.dataset == 'KAIROS':
dm = KAIROSDataModule(args)
if args.max_steps < 0 :
args.max_epochs = args.min_epochs = args.num_train_epochs
trainer = Trainer(
logger=tb_logger,
min_epochs=args.num_train_epochs,
max_epochs=args.num_train_epochs,
gpus=args.gpus,
checkpoint_callback=checkpoint_callback,
accumulate_grad_batches=args.accumulate_grad_batches,
gradient_clip_val=args.gradient_clip_val,
num_sanity_val_steps=0,
val_check_interval=0.5, # use float to check every n epochs
precision=16 if args.fp16 else 32,
callbacks = [lr_logger, ],
)
if args.load_ckpt:
model.load_state_dict(torch.load(args.load_ckpt,map_location=model.device)['state_dict'])
if args.eval_only:
dm.setup('test')
trainer.test(model, datamodule=dm) #also loads training dataloader
else:
dm.setup('fit')
trainer.fit(model, dm)
if __name__ == "__main__":
main()