-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_all.py
255 lines (211 loc) · 9.2 KB
/
test_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import cv2
import argparse
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms, models
from torchvision.transforms import RandomHorizontalFlip, RandomCrop
from tqdm import tqdm
from PIL import Image
parser = argparse.ArgumentParser(description='Run tests on different datasets')
parser.add_argument('--root_dir', type=str, required=True, help='Root directory for the dataset')
args = parser.parse_args()
root_dir = args.root_dir
#root_dir = # '/media/taeyeong/T7 Shield/data/dataset/cifar10_sdnone_1'
dataset_paths = [
'/media/taeyeong/T7 Shield/data/dataset/cifar10_original/test',
'/media/taeyeong/T7 Shield/data/dataset/imagenet_val',
'/media/taeyeong/T7 Shield/data/dataset/stl10_test',
]
# Custom CIFAR-10 dataset class
class CustomCIFAR10Dataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
self.data = []
self.labels = []
for label, cls in enumerate(self.classes):
class_path = os.path.join(self.root_dir, cls)
for filename in os.listdir(class_path):
img_path = os.path.join(class_path, filename)
self.data.append(img_path)
self.labels.append(label)
def __len__(self):
return len(self.data)
# CV
def __getitem__(self, idx):
img_path = self.data[idx]
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if self.transform:
img = self.transform(img)
label = self.labels[idx]
return img, label
# # PIL
# def __getitem__(self, idx):
# img_path = self.data[idx]
# img = Image.open(img_path).convert("RGB")
# if self.transform:
# img = self.transform(img)
# label = self.labels[idx]
# return img, label
# Load the data once to use memory efficiently
dataset = CustomCIFAR10Dataset(root_dir=root_dir)
def train_and_test(model_name, root_dir, resize_size, dataset_paths, transform_train, transform_test):
print(f"\nTraining {model_name} with images resized to {resize_size}x{resize_size}...")
# 모델, 손실 함수, 최적화 함수 정의
model = models.resnet18(weights=None, num_classes=10)
# 사용 가능한 GPU의 수에 따라 모델을 설정
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs!")
model = nn.DataParallel(model)
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(model.parameters(), lr=0.001)
# 데이터셋 및 데이터로더 정의
dataset = CustomCIFAR10Dataset(root_dir=root_dir, transform=transform_train)
loader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=16)
# 학습
for epoch in range(1, 51):
model.train()
epoch_loss = 0.0
epoch_corrects = 0
for inputs, labels in tqdm(loader, desc=f"Epoch {epoch}"):
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
epoch_loss += loss.item() * inputs.size(0)
epoch_corrects += torch.sum(preds == labels.data)
print('Training Loss:', epoch_loss / len(loader.dataset))
print('Training Accuracy:', epoch_corrects.double() / len(loader.dataset))
if epoch % 50 == 0:
save_dir = f'saved_models'
os.makedirs(save_dir, exist_ok=True)
save_path = f'{save_dir}/{model_name}_{resize_size}x{resize_size}_{epoch}.pth'
torch.save(model.state_dict(), save_path)
# 테스트
for dataset_path in dataset_paths:
dataset_name = os.path.basename(dataset_path)
print(f"\nTesting model trained on '{os.path.basename(root_dir)}' using {dataset_name} dataset...")
test_dataset = CustomCIFAR10Dataset(root_dir=dataset_path, transform=transform_test)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=16)
corrects = 0
total = 0
corrects_per_class = [0] * 10
total_per_class = [0] * 10
with torch.no_grad():
model.eval()
for inputs, labels in test_loader:
inputs, labels = inputs.cuda(), labels.cuda()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
# 각 클래스별 정확도 업데이트
for label, pred in zip(labels, preds):
if label == pred:
corrects_per_class[label.item()] += 1
total_per_class[label.item()] += 1
corrects += torch.sum(preds == labels.data)
total += labels.size(0)
accuracy = 100 * corrects / total
print(f'Average Accuracy on {dataset_name} dataset: {accuracy:.2f} %')
# 각 클래스별 정확도 출력
for i, class_name in enumerate(test_dataset.classes):
class_accuracy = 100 * corrects_per_class[i] / total_per_class[i]
print(f"Accuracy for class {class_name}: {class_accuracy:.2f} %")
# 'stl10_test' 데이터셋에 대해서만 'frog' 클래스를 제외하고 평균 정확도 계산
if dataset_name == 'stl10_test':
sum_accuracy = 0
count = 0
for i, class_name in enumerate(test_dataset.classes):
if class_name != 'frog':
class_accuracy = corrects_per_class[i] / total_per_class[i]
sum_accuracy += class_accuracy
count += 1
avg_accuracy_excluding_frog = 100 * sum_accuracy / count
print(f'Average Accuracy Excluding Frog on STL10 Test Dataset: {avg_accuracy_excluding_frog:.2f} %')
# CV 학습 및 테스트를 위한 변환 정의
transform_32 = transforms.Compose([
transforms.ToPILImage(),
#RandomHorizontalFlip(),
#transforms.RandomRotation(15),
transforms.Resize((32, 32),interpolation=cv2.INTER_CUBIC),
transforms.ToTensor(),
])
transform_96 = transforms.Compose([
transforms.ToPILImage(),
#RandomHorizontalFlip(),
#transforms.RandomRotation(15),
transforms.Resize((96, 96),interpolation=cv2.INTER_CUBIC),
transforms.ToTensor(),
])
transform_224 = transforms.Compose([
transforms.ToPILImage(),
#RandomHorizontalFlip(),
#transforms.RandomRotation(15),
transforms.Resize((224, 224),interpolation=cv2.INTER_CUBIC),
transforms.ToTensor(),
])
transform_32_test = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((32, 32),interpolation=cv2.INTER_CUBIC),
transforms.ToTensor(),
])
transform_96_test = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((96, 96),interpolation=cv2.INTER_CUBIC),
transforms.ToTensor(),
])
transform_224_test = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224),interpolation=cv2.INTER_CUBIC),
transforms.ToTensor(),
])
# # PIL 학습 및 테스트를 위한 변환 정의
# transform_32 = transforms.Compose([
# #RandomHorizontalFlip(),
# #transforms.RandomRotation(15),
# #transforms.CenterCrop(363), # if training image is 512x512
# #transforms.CenterCrop(725), # if training image is 1024x1024
# transforms.Resize((32, 32),interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.ToTensor(),
# ])
# transform_96 = transforms.Compose([
# #RandomHorizontalFlip(),
# #transforms.RandomRotation(15),
# #transforms.CenterCrop(363), # if training image is 512x512
# #transforms.CenterCrop(725), # if training image is 1024x1024
# transforms.Resize((96, 96),interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.ToTensor(),
# ])
# transform_224 = transforms.Compose([
# #RandomHorizontalFlip(),
# #transforms.RandomRotation(15),
# #transforms.CenterCrop(363), # if training image is 512x512
# #transforms.CenterCrop(725), # if training image is 1024x1024
# transforms.Resize((224, 224),interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.ToTensor(),
# ])
# transform_32_test = transforms.Compose([
# transforms.Resize((32, 32),interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.ToTensor(),
# ])
# transform_96_test = transforms.Compose([
# transforms.Resize((96, 96),interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.ToTensor(),
# ])
# transform_224_test = transforms.Compose([
# transforms.Resize((224, 224),interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.ToTensor(),
# ])
# 각 모델에 대한 학습 및 테스트 실행
train_and_test('ResNet-18', root_dir, 32, [dataset_paths[0]], transform_32, transform_32_test)
train_and_test('ResNet-18', root_dir, 96, [dataset_paths[1]], transform_96, transform_96_test)
train_and_test('ResNet-18', root_dir, 224, [dataset_paths[2]], transform_224, transform_224_test)