-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpneumdet.py
53 lines (37 loc) · 1.53 KB
/
pneumdet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
from ml.utils import *
from ml.models import Model, create_model
from ml.ensemble import Ensemble, ensemble, EnsembleUnit
def parse_commandline():
models = ['inception', 'vgg16', 'resnet50', 'densenet121', 'xception', 'mobilenet']
parser = argparse.ArgumentParser(description='Detect pneumonia from chest x rays.')
parser.add_argument('--train', nargs=1, dest='model', choices=models, help='Train a model.', )
parser.add_argument('--evaluate', nargs='+', help='Evaluate trained model.')
ensemble_options = ['evaluate']
parser.add_argument('--ensemble', nargs=1, choices=ensemble_options, help='Use ensemble.')
return parser.parse_args()
def train(train_gen, test_gen, model: Model):
model.launch_tensorboard()
history = model.train(train_gen)
model.evaluate(test_gen)
model.save()
return history
def evaluate(filepath):
print(f"Loading: {filepath}")
print(f"Evaluating: {filepath}")
model = EnsembleUnit(filepath)
model.evaluate('dataset/chest_xray/test')
def evaluate_ensemble(ensemble: Ensemble):
ensemble.evaluate('dataset/chest_xray/test')
if __name__ == "__main__":
args = parse_commandline()
if args.ensemble:
if args.ensemble[0] == 'evaluate':
evaluate_ensemble(ensemble)
if args.model:
train_generator, test_generator = create_generators()
model = create_model(args.model[0])
train(train_generator, test_generator, model)
if args.evaluate:
for path in args.evaluate:
evaluate(path)