-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_numpy.py
773 lines (617 loc) · 26.3 KB
/
_numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
import slope
from slope.core import (
Compiler,
Backend,
Operator,
OperatorSet,
ProcedureSet,
Tensor,
TensorBuffer,
SymbolicTensor,
UndefinedPrimal,
list_zip,
list_map,
)
import math
import numpy as np
from typing import (
Tuple,
List,
Dict,
Any,
Optional,
Sequence,
Union,
Iterator,
Callable,
)
from collections import defaultdict
import importlib
import os
import functools
# --------------
# Compiler
# --------------
compiler = Compiler(name="numpy", default_dtype=slope.SLOPE_DTYPE)
compiler.set_dtype_map(
{
slope.core.dtypes.float32: np.dtype("float32"),
Tensor.int64: np.dtype("int64"),
Tensor.int32: np.dtype("int32"),
Tensor.int8: np.dtype("int8"),
Tensor.bool: np.dtype("bool"),
}
)
@compiler.set_method
def from_numpy(self, val, dtype=compiler.default_dtype_value):
val = np.array(val, dtype=compiler.dtype_map[dtype])
return Tensor(TensorBuffer(val))
@compiler.set_method
def numpy_of(self, tensor):
return tensor.buf.val
@compiler.set_method
def device_of(self, tensor):
return "cpu"
@compiler.set_method
def shape_of(self, tensor):
return tuple(int(i) for i in tensor.buf.val.shape)
@compiler.set_method
def dtype_of(self, tensor):
return self.dtype_map_inv[tensor.buf.val.dtype]
@compiler.set_method
def export(self, jit_output: slope.core.JitOutput, output_path, *args, **kwargs):
code = jit_output.code
os.makedirs(output_path, exist_ok=True)
consts_dir_path = os.path.join(output_path, "consts")
os.makedirs(consts_dir_path, exist_ok=True)
in_binders = jit_output.codegen_output["in_binders"]
outs = jit_output.codegen_output["outs"]
num_consts = jit_output.program.num_consts
load_consts_code = ""
for i in range(num_consts):
const_name = in_binders[i]["name"]
const_path = os.path.join(consts_dir_path, f"{const_name}.npy")
load_consts_code += f"""{const_name} = np.load(os.path.join(consts_dir_path, "{const_name}.npy"))\n"""
np.save(const_path, in_binders[i]["type"].numpy())
input_args_code = ", ".join(ib["name"] for ib in in_binders[num_consts:])
args_code = ", ".join(ib["name"] for ib in in_binders)
input_arg_names = [ib["name"] for ib in in_binders[num_consts:]]
input_arg_names_str = ", ".join(input_arg_names)
outs_names = [out["name"] for out in outs]
test_input_code = ""
for i in range(num_consts, len(in_binders)):
input_name = in_binders[i]["name"]
input_shape = in_binders[i]["type"].shape
dtype = in_binders[i]["type"].dtype
input_dtype = ("np." + dtype.numpy.__name__) if dtype is not Tensor.bool else "bool"
test_input_code += f""" {input_name} = np.ones({input_shape}, dtype={input_dtype})\n"""
module_path = os.path.join(output_path, "__init__.py")
module_code = f"""import numpy as np
import os
root_path = os.path.dirname(__file__)
consts_dir_path = os.path.join(root_path, "consts")
{load_consts_code}
{code}
input_arg_names = {input_arg_names}
out_names = {outs_names}
def run({input_args_code}):
return main({args_code})
if __name__ == "__main__":
{test_input_code}
for inp_name, inp in zip(input_arg_names, ({input_arg_names_str})):
print(f"{{inp_name}} = ")
print(inp)
print(f"dtype: {{inp.dtype}}")
print(f"shape: {{inp.shape}}")
print()
outs = run({input_arg_names_str})
print("outputs:")
for out_name, out in zip(out_names, outs):
print(f"{{out_name}} = ")
print(out)
print(f"dtype: {{out.dtype}}")
print(f"shape: {{out.shape}}")
print()
"""
with open(module_path, "w") as f:
f.write(module_code)
slope.dblog(module_code, enable=slope.LOG_JIT)
@compiler.set_method
def compile(self, codegen_output):
deps_dict = dict()
deps_dict["numpy"] = importlib.import_module("numpy")
deps_dict["np"] = deps_dict["numpy"]
deps_dict["math"] = importlib.import_module("math")
code_lines = codegen_output["code_lines"]
exec_locals = dict()
code = "\n".join(code_lines)
exec(compile(code, "<string>", "exec"), deps_dict, exec_locals)
fn = exec_locals["main"]
return fn, code
@compiler.set_method
def codegen(self, program, args, *, fn_name: str = "main", fn_defs=dict()) -> List[Any]:
if fn_name == "main":
assert not hasattr(self, "fn_count")
self.fn_count = 0
assert not hasattr(self, "depth")
self.depth = 0
def indent(code, amount):
spaces = " " * (len(code) - len(code.lstrip()))
spaces += " " * amount
return "\n".join([spaces + line for line in code.strip().split("\n")])
# codegen is recursive if jit-of-jit happens
backend: Dict[slope.Var, Any] = {}
il1 = (self.depth + 1) * 4
body_code_lines = []
for inb in program.in_binders:
prefix = "x" if type(inb.symtensor) is SymbolicTensor else "c"
idx = sum_py([1 if v["name"][0] == prefix else 0 for v in backend.values()])
backend[inb] = dict(name=f"{prefix}{idx}", type=inb.symtensor)
for instruction in program.instructions:
if len(instruction.out_binders) == 0: # skip codegen for function returns nothing
continue
in_vals = list_map(lambda x: backend[x]["name"], instruction.inputs)
for outb in instruction.out_binders:
prefix = "y" if outb in program.outs else "z"
idx = sum_py([1 if v["name"][0] == prefix else 0 for v in backend.values()])
backend[outb] = dict(name=f"{prefix}{idx}", type=outb.symtensor)
out_vals = list_map(lambda z: backend[z]["name"], instruction.out_binders)
if instruction.op.op_type is slope.core.OperatorType.Meta:
lhs = ", ".join(out_vals)
self.depth += 1
rhs, fn_defs = self.impls[instruction.op](program, args, instruction, in_vals, fn_defs)
self.depth -= 1
impl_code = f"{lhs} = {rhs}"
else:
impl_code = self.impls[instruction.op](*in_vals, **instruction.params)
if len(out_vals) == 1:
impl_code = impl_code.replace("ret", out_vals[0])
else:
raise NotImplementedError
for np_dtype in self.dtype_map.values(): # fix dtype kwargs not having 'np.' prefix
impl_code = impl_code.replace(
np_dtype.name,
"bool" if np_dtype is np.dtype("bool") else f"np.{np_dtype.name}",
)
for impl_code_line in impl_code.split("\n"): # handle multi-line code
body_code_lines += [indent(impl_code_line, il1)]
in_binders = list_map(lambda x: backend[x], program.in_binders)
arg_type_strs = [i["name"] for i in in_binders]
# arg_type_asserts = [
# f"{self.dtype_map[i['type'].dtype]}[{repr(list(i['type'].shape))[1:-1]}] {i['name']}" for i in in_binders
# ]
fn_args_str = ", ".join(arg_type_strs)
outs = list_map(lambda x: backend[x], program.outs) # TODO: input that is output should has identity op
out_type_strs = [o["name"] for o in outs]
# out_type_asserts = [
# f"{self.dtype_map[o['type'].dtype]}[{repr(list(o['type'].shape))[1:-1]}] {o['name']}" for o in outs
# ]
head_code_lines = []
head_code_lines += [f"def {fn_name} ({fn_args_str}):"]
out_type_str = ", ".join(out_type_strs) + ("," if len(outs) == 1 else "")
return_line = [indent(f"return {out_type_str}", il1)]
functions_code_lines = []
for op, fn_def_code_lines in fn_defs.items():
# functions_code_lines += fn_def_code_lines
functions_code_lines += fn_def_code_lines
code_lines = head_code_lines + [indent(l, il1) for l in functions_code_lines] + body_code_lines + return_line
slope.dblog(
f"\n-- {program.name} codegen:\n\n" + "\n".join(code_lines) + "\n\n==\n",
enable=slope.LOG_JIT,
)
if fn_name == "main":
del self.fn_count
del self.depth
assert len(outs) == len(program.outs)
return dict(code_lines=code_lines, fn_defs=fn_defs, in_binders=in_binders, outs=outs)
### Operator Impls
compiler.set_impl(operator_set.cast)(lambda self, x, *, dtype: f"ret = {x}.astype(dtype={dtype})")
compiler.set_impl(operator_set.stop_gradient)(lambda self, x: f"ret = {x}")
compiler.set_impl(operator_set.neg)(lambda self, x: f"ret = np.negative({x})")
compiler.set_impl(operator_set.sqrt)(lambda self, x: f"ret = np.sqrt({x})")
compiler.set_impl(operator_set.exp)(lambda self, x: f"ret = np.exp({x})")
compiler.set_impl(operator_set.log)(lambda self, x: f"ret = np.log({x})")
compiler.set_impl(operator_set.sin)(lambda self, x: f"ret = np.sin({x})")
compiler.set_impl(operator_set.add)(lambda self, x, w: f"ret = np.add({x}, {w})")
compiler.set_impl(operator_set.sub)(lambda self, x, w: f"ret = np.subtract({x}, {w})")
compiler.set_impl(operator_set.mul)(lambda self, x, w: f"ret = np.multiply({x}, {w})")
compiler.set_impl(operator_set.div)(lambda self, x, w: f"ret = np.divide({x}, {w})")
compiler.set_impl(operator_set.pow)(lambda self, x, w: f"ret = np.power({x}, {w})")
compiler.set_impl(operator_set.invert)(lambda self, x: f"ret = np.invert({x})")
compiler.set_impl(operator_set.equal)(lambda self, x, w: f"ret = np.equal({x}, {w})")
compiler.set_impl(operator_set.maximum)(lambda self, x, w: f"ret = np.maximum({x}, {w})")
compiler.set_impl(operator_set.sum)(lambda self, x, *, dim, keepdim: f"ret = np.sum({x}, axis={dim}, keepdims={keepdim})")
compiler.set_impl(operator_set.max)(lambda self, x, *, dim, keepdim: f"ret = np.max({x}, axis={dim}, keepdims={keepdim})")
compiler.set_impl(operator_set.arange)(
lambda self, *, start, stop, stride, dtype: f"ret = np.arange(start={start}, stop={stop}, step={stride}, dtype={dtype})"
)
compiler.set_impl(operator_set.full)(
lambda self, *, shape, fill_value, dtype: f"ret = np.full(shape={shape}, fill_value={fill_value}, dtype={dtype})"
)
compiler.set_impl(operator_set.random_uniform)(
lambda self, *, shape, dtype: (
f"ret = {'np.array(' if shape == () else ''}np.random.uniform(low=np.zeros(shape={shape})){')' if shape == () else ''}.astype(dtype={dtype})"
)
)
compiler.set_impl(operator_set.random_normal)(
lambda self, *, shape, dtype: (
f"ret = {'np.array(' if shape == () else ''}np.random.normal(loc=np.zeros(shape={shape})){')' if shape == () else ''}.astype(dtype={dtype})"
)
)
compiler.set_impl(operator_set.expand)(lambda self, x, *, shape: f"ret = np.broadcast_to({x}, shape={shape})")
compiler.set_impl(operator_set.reshape)(lambda self, x, *, shape: f"ret = np.reshape({x}, newshape={shape})")
@compiler.set_impl(operator_set.pad)
def pad_impl(self, x, *, padding, mode, value):
pad_width = [(lo, hi) for lo, hi in zip(padding[0::2], padding[1::2])]
return f"ret = np.pad({x}, {pad_width}, constant_values={value})"
compiler.set_impl(operator_set.slice)(
lambda self, x, *, starts, limits, strides: f"ret = {x}[tuple(slice(s, l, st) for s, l, st in zip({starts}, {limits}, {strides}))]"
)
compiler.set_impl(operator_set.cat)(lambda self, *xs, dim: f"ret = np.concatenate(({','.join(xs)}), axis={dim})")
compiler.set_impl(operator_set.permute)(lambda self, x, *, perm: f"ret = np.transpose({x}, axes={perm})")
compiler.set_impl(operator_set.flip)(lambda self, x, *, dim: f"ret = np.flip({x}, axis={dim})")
@compiler.set_impl(slope.core.jit_op)
def jit_op_impl(self, program, args, instruction, in_vals, fn_defs):
jit_program = instruction.params["program"]
jit_name = f"{program.name}"
jit_codegen_output = self.codegen(
jit_program,
args,
fn_name=jit_name,
fn_defs=fn_defs,
)
assert jit_name not in fn_defs.keys()
fn_defs[jit_name] = jit_codegen_output["code_lines"]
fn_defs = {**fn_defs, **jit_codegen_output["fn_defs"]}
args_str = ", ".join(in_vals)
rhs = f"{jit_name}({args_str})"
return rhs, fn_defs
procedure_set = ProcedureSet()
@procedure_set.register()
def zeros(*args, **kwargs):
dtype = kwargs.get("dtype", slope.SLOPE_DTYPE)
if kwargs.get("shape", None) is None:
shape = args[0] if isinstance(args[0], (tuple, list)) else args
assert all(i >= 0 for i in shape)
return slope.full(shape, 0.0, dtype)
@procedure_set.register()
def ones(*args, **kwargs):
dtype = kwargs.get("dtype", slope.SLOPE_DTYPE)
if kwargs.get("shape", None) is None:
shape = args[0] if isinstance(args[0], (tuple, list)) else args
assert all(i >= 0 for i in shape)
return slope.full(shape=shape, fill_value=1.0, dtype=dtype)
@procedure_set.register(static_argnames="fill_value")
def full_like(y, fill_value):
return slope.full(shape=y.shape, fill_value=fill_value, dtype=y.dtype)
@procedure_set.register()
def zeros_like(y):
return full_like(y, 0.0)
@procedure_set.register()
def ones_like(y):
return full_like(y, 1.0)
@procedure_set.register()
def where(x, trueval, falseval):
cond = x != 0.0
if not isinstance(trueval, Tensor):
trueval = slope.full((), trueval)
if not isinstance(falseval, Tensor):
falseval = slope.full((), falseval)
cond = cond.cast(trueval.dtype)
return cond * trueval + (1.0 - cond) * falseval
@procedure_set.register(static_argnames="dim keepdim")
def mean(x, dim=None, keepdim=False):
out = x.sum(dim=dim, keepdim=keepdim)
return out * (math.prod(out.shape) / math.prod(x.shape))
@procedure_set.register()
def rsqrt(x):
return (slope.ones_like(x) / x).sqrt()
@procedure_set.register()
def cos(x):
return ((math.pi / 2) - x).sin()
@procedure_set.register()
def tan(x):
return x.sin() / x.cos()
@procedure_set.register()
def not_equal(x, w):
return ~(x.equal(w))
@procedure_set.register()
def greater_equal(x, w):
return x.maximum(w).equal(w)
@procedure_set.register()
def less_equal(x, w):
return x.minimum(w).equal(w)
@procedure_set.register()
def greater(x, w):
return 1.0 - (x <= w)
@procedure_set.register()
def less(x, w):
return 1.0 - (x >= w)
@procedure_set.register()
def minimum(x, w):
return -x.maximum(-x, -w)
@procedure_set.register(static_argnames="dim keepdim")
def min(x, dim=None, keepdim=False):
return -((-x).max(x, dim, keepdim))
@procedure_set.register(static_argnames="dim keepdim")
def argmax(x, dim=None, keepdim=False):
if dim is None:
idx = (x == x.max(dim)) * slope.arange(
math.prod(x.shape) - 1,
-1,
-1,
dtype=slope.int32,
).reshape(x.shape)
return math.prod(x.shape) - idx.max() - 1
dim = dim + len(x.shape) if dim < 0 else dim
m = (x == x.max(dim=dim, keepdim=True)).cast(slope.int32)
idx = m * slope.arange(x.shape[dim] - 1, -1, -1, dtype=slope.int32).reshape((x.shape[dim], *[1] * (x.ndim - dim - 1)))
ret = x.shape[dim] - idx.max(dim=dim, keepdim=keepdim) - 1
return ret
@procedure_set.register(static_argnames="dim keepdim")
def argmin(x, dim=None, keepdim=False):
return (-x).argmax(dim=dim, keepdim=keepdim)
@procedure_set.register()
def log2(x):
return x.log() / math.log(2)
@procedure_set.register()
@staticmethod
def _tri(r: int, c: int, k: int = 0, **kwargs) -> Tensor:
return slope.arange(r, **kwargs).unsqueeze(1).expand(r, c) <= Tensor.arange(-k, c - k, **kwargs).unsqueeze(0).expand(r, c)
@procedure_set.register()
def triu(self, k: int = 0) -> Tensor:
return slope._tri(
self.shape[-2],
self.shape[-1],
k=k,
dtype=self.dtype,
device=self.device,
).where(self, slope.zeros_like(self))
@procedure_set.register()
def tril(self, k: int = 0) -> Tensor:
return slope._tri(
self.shape[-2],
self.shape[-1],
k=k + 1,
dtype=self.dtype,
device=self.device,
).where(slope.zeros_like(self), self)
@procedure_set.register()
def trunc(self: Tensor) -> Tensor:
return self.cast(slope.int32).cast(self.dtype)
@procedure_set.register()
def ceil(self: Tensor) -> Tensor:
return (self > (b := self.trunc())).where(b + 1, b)
@procedure_set.register()
def floor(self: Tensor) -> Tensor:
return (self < (b := self.trunc())).where(b - 1, b)
@procedure_set.register()
def square(self):
return self * self
@procedure_set.register()
def clip(self, min_, max_):
return self.maximum(min_).minimum(max_)
@procedure_set.register()
def abs(self):
return self.relu() + (-self).relu()
@procedure_set.register()
def sign(self):
return self / (self.abs() + 1e-10)
@procedure_set.register()
def reciprocal(self):
return 1.0 / self
@procedure_set.register()
def matmul(x, w):
x = x.reshape((*x.shape[0:-1], 1, x.shape[-1]))
w = w.reshape((*w.shape[0:-2], 1, w.shape[-2], w.shape[-1])).T()
return (x * w).sum(-1).reshape((*x.shape[0:-2], -1))
@procedure_set.register()
def T(x):
perm = list(range(x.ndim))
perm[-2], perm[-1] = perm[-1], perm[-2]
return x.permute(tuple(perm))
@procedure_set.register()
def getitem(self, val):
# Union[int, slice, Tensor, None, Ellipsis, Tuple[Union[int, slice, Tensor, None, Ellipsis], ...]]
def normalize_int(e, i, dim_sz):
if -dim_sz <= e < dim_sz:
return e if e != -1 else dim_sz - 1
raise IndexError(f"index {e} is out of bounds for dimension {i} with size {self.shape[i]}")
orig_slices = list(val) if isinstance(val, tuple) else [val]
count = defaultdict(list)
for i, v in enumerate(orig_slices):
count[type(v) if not isinstance(v, slope.core.Tensor) else "tensor"] += [i]
if (num_slices := len(count[int]) + len(count[slice_py]) + len(count["tensor"])) > len(self.shape):
raise IndexError(f"too many indices for tensor of dimension {len(self.shape)}")
if len(ellipsis_found := count[type(Ellipsis)]) > 1:
raise IndexError("an index can only have a single ellipsis ('...')")
ellipsis_idx = ellipsis_found[0] if ellipsis_found else len(orig_slices)
orig_slices[ellipsis_idx : ellipsis_idx + 1] = [slice_py(None)] * (len(self.shape) - num_slices)
valid_slices = [v for v in orig_slices if v is not None]
valid_slices = [
v if isinstance(v, slice_py) else slice_py(y_ := normalize_int(v, i, dim_sz), y_ + 1) if isinstance(v, int) else slice_py(None)
for i, (v, dim_sz) in enumerate(zip(valid_slices, self.shape))
]
start, stop, strides = zip(*y) if (y := [s.indices(dim_sz) for s, dim_sz in zip(valid_slices, self.shape)]) else ((), (), ())
new_slice = tuple((s, e) if st > 0 else (e + 1, s + 1) for s, e, st in zip(start, stop, strides))
sliced_tensor = self.padslice(new_slice).flip(dim=tuple([i for i, s in enumerate(strides) if s < 0]))
new_shape = sliced_tensor.shape
if any(abs_py(s) != 1 for s in strides):
strides = tuple(abs_py(s) for s in strides)
# Pad: add pad at the end: [dim_sz] -> [dim_sz_padded]
padded_tensor = sliced_tensor.pad(
tuple((0, s - (dim_sz % s) if dim_sz % s != 0 else 0) for s, dim_sz in zip(strides, sliced_tensor.shape))
)
# Reshape: [dim_sz_padded] -> [dim_sz_padded // s, s]
reshaped_tensor = padded_tensor.reshape(flatten([sh // s, s] for sh, s in zip(padded_tensor.shape, strides)))
new_shape = reshaped_tensor.shape[::2]
# Shrink: do [:, 0]
sliced_tensor = reshaped_tensor.padslice(tuple(flatten(((0, sh), (0, 1)) for sh in new_shape)))
final_shape, it_shape, dim, tensors, dim_collapsed = (
[],
iter(new_shape),
[],
[],
0,
)
for i, s in enumerate(orig_slices):
if s is None:
final_shape.append(1)
else: # s is int or slice or Tensor
dim_shape = next(it_shape)
if isinstance(s, int):
dim_collapsed += 1
else:
final_shape.append(dim_shape)
if isinstance(s, slope.core.Tensor):
tensors.append(s)
dim.append(i - dim_collapsed)
ret = sliced_tensor.reshape(tuple(final_shape))
if tensors: # Fancy/tensor indexing
# normalize idx
idx = [t.sign().neg().relu() * ret.shape[d] + t for d, t in zip(dim, tensors)]
max_dim = max(i.ndim for i in idx)
# compute sum_dim, arange, and idx
sum_dim = [d if n == 0 else d + max_dim - n for n, d in enumerate(dim)]
slice_arange = [
slope.arange(
ret.shape[d],
dtype=slope.int32,
requires_grad=False,
device=self.device,
).reshape(
*[1] * sd,
ret.shape[d],
*[1] * (ret.ndim + max_dim - n - sd - 1),
)
for n, (sd, d) in enumerate(zip(sum_dim, dim))
]
first_idx = [
idx[0].reshape(
*[1] * dim[0],
*[1] * (1 + max_dim - idx[0].ndim),
*idx[0].shape,
*[1] * (ret.ndim - dim[0] - 1),
)
]
rest_idx = [
i.reshape(
*[1] * dim[0],
*[1] * (max_dim - i.ndim),
*i.shape,
*[1] * (ret.ndim - dim[0] - n),
)
for n, i in enumerate(idx[1:], 1)
]
idx = first_idx + rest_idx
ret = ret.reshape(
*ret.shape[: sum_dim[0] + 1],
*[1] * max_dim,
*ret.shape[sum_dim[0] + 1 :],
)
# iteratively fancy index
for a, i, sd in zip(slice_arange, idx, sum_dim):
ret = (a == i).mul(ret).sum(sd)
# special permute case
if dim[0] != 0 and len(dim) != 1 and dim != list(range(dim[0], dim[-1] + 1)):
ret_dims = list(range(ret.ndim))
ret = ret.permute(ret_dims[dim[0] : dim[0] + max_dim] + ret_dims[: dim[0]] + ret_dims[dim[0] + max_dim :])
return ret
@procedure_set.register(static_argnames=("arg", "value"))
def padslice(x, arg: Sequence[Optional[Tuple[int, int]]], value: float = 0):
def flatten_seq(l: Iterator):
return [item for sublist in l for item in sublist]
# some dim are pad, some are sliced
arg_ = tuple([a if a is not None else (0, s) for s, a in zip(x.shape, arg)])
padding = tuple([(max_py(0, -p[0]), max_py(0, p[1] - x.shape[i])) for i, p in enumerate(arg_)])
x = x.pad(flatten_seq(padding), value=value) # flatten
starts, limits, strides = tuple(zip(*[(p[0] + padding[i][0], p[1] + padding[i][0], 1) for i, p in enumerate(arg_)]))
x = x.slice(starts, limits, strides)
return x
@procedure_set.register(static_argnames="padding value")
def pad2d(x, padding: Union[List[int], Tuple[int, ...]], value: float = 0):
# (padding_left, padding_right, padding_top, padding_bottom)
slc = [(-p0, s + p1) for p0, p1, s in zip(padding[::2], padding[1::2], x.shape[::-1])][::-1]
return x.padslice([(0, s) for s in x.shape[: -(len(padding) // 2)]] + slc, value=value)
@procedure_set.register(static_argnames="dim")
def gather(x, idx, dim: int):
assert idx.ndim == x.ndim, "x.ndim must equal idx.ndim"
assert all(s >= i for s, i in zip(x.shape, idx.shape)), "all dim of idx.shape must be smaller than x.shape"
if dim < 0:
dim += x.ndim
idx = idx.transpose(ax=dim, aw=0).expand_dims(-1)
permarg = list(range(x.ndim))
permarg = permarg[1:dim] + [permarg[0]] + permarg[dim + 1 :] + [permarg[dim]] if dim != 0 else permarg[1:] + [permarg[0]]
return (
(
(
idx
== slope.arange(
x.shape[dim],
dtype=slope.int32,
requires_grad=False,
device=x.device,
)
)
* x.permute(*permarg).padslice(tuple([*[(0, sh) for sh in idx.shape[1:-1]], (0, x.shape[dim])])).expand_dims(0)
)
.sum(-1)
.transpose(ax=0, aw=dim)
)
@procedure_set.register(static_argnames="dim")
@staticmethod
def stack(tensors, dim=0):
first = tensors[0].expand_dims(dim)
expand_dimsd_tensors = [tensor.expand_dims(dim) for tensor in tensors[1:]]
return first.cat(*expand_dimsd_tensors, dim=dim)
@procedure_set.register(static_argnames="repeats")
def repeat(x, repeats):
base_shape = (1,) * (len(repeats) - x.ndim) + x.shape
new_shape = [x for b in base_shape for x in [1, b]]
expand_shape = [x for rs in zip(repeats, base_shape) for x in rs]
final_shape = [r * s for r, s in zip(repeats, base_shape)]
return x.reshape(new_shape).broadcast(expand_shape).reshape(final_shape)
@procedure_set.register(static_argnames="dim")
def split(x, num: int, dim: int):
dim, step = dim + x.ndim if dim < 0 else dim, math.ceil(x.shape[dim] / num)
slice_params = [[slice(None)] * dim + [slice(k, k + step)] for k in range(0, x.shape[dim], step)]
return tuple(x[tuple(sl)] for sl in slice_params)
@procedure_set.register(static_argnames="dim")
def squeeze(x, dim=None):
if dim is None:
return x if 1 not in x.shape else x.reshape(*[size for size in x.shape if size != 1])
if dim <= 0 and x.ndim == 0:
return x # This is to match PyTorch behavior
if not -x.ndim <= dim < x.ndim:
raise IndexError(
f"Dimension out of range (expected to be in range of [{-x.ndim if x.ndim > 0 else x.ndim-1}, {x.ndim-1 if x.ndim > 0 else x.ndim}], but got {dim})"
)
if dim < 0:
dim += x.ndim
return x if x.shape[dim] != 1 else x.reshape(*[size for idx, size in enumerate(x.shape) if idx != dim])
@procedure_set.register(static_argnames="dim")
def expand_dims(x, dim):
if dim < 0:
dim = len(x.shape) + dim + 1
return x.reshape(x.shape[:dim] + (1,) + x.shape[dim:])
@procedure_set.register(static_argnames="ax aw")
def transpose(x, ax=1, aw=0):
order = list(range(len(x.shape)))
order[ax], order[aw] = order[aw], order[ax]
return x.permute(tuple(order))
@procedure_set.register(static_argnames="start_dim")
def flatten(x, start_dim=0):
return x.reshape(shape=x.shape[:start_dim] + (-1,))
@procedure_set.register(static_argnames="dim")
def cumsum(x, dim: int = 0):
return x.transpose(dim, -1).pad((x.shape[dim] - 1, 0)).pool((x.shape[dim],)).sum(-1).transpose(dim, -1)
@staticmethod
@procedure_set.register(static_argnames="start stop step")
def arange_with_cumsum(start, stop=None, step=1):
if stop is None:
stop, start = start, 0
return slope.full((math.ceil((stop - start) / step),), step).cumsum() + (start - step)
@procedure_set.register(static_argnames="dtype")
def one_hot(x, k, dtype=Tensor.int32):
return (x[:, None].cast(dtype) == slope.arange(k, dtype=dtype)).cast(dtype)
numpy_backend = Backend(operator_set, procedure_set, compiler)