forked from xcmyz/FastSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
183 lines (129 loc) · 5.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import os
import Tacotron2
import text
import hparams
def process_text(train_text_path):
with open(train_text_path, "r", encoding="utf-8") as f:
txt = []
for line in f.readlines():
txt.append(line)
return txt
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def plot_data(data, figsize=(12, 4)):
_, axes = plt.subplots(1, len(data), figsize=figsize)
for i in range(len(data)):
axes[i].imshow(data[i], aspect='auto',
origin='bottom', interpolation='none')
if not os.path.exists("img"):
os.mkdir("img")
plt.savefig(os.path.join("img", "model_test.jpg"))
def get_mask_from_lengths(lengths, max_len=None):
if max_len == None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len))
mask = (ids < lengths.unsqueeze(1)).byte()
return mask
def get_WaveGlow():
waveglow_path = os.path.join("waveglow", "pretrained_model")
waveglow_path = os.path.join(waveglow_path, "waveglow_256channels.pt")
wave_glow = torch.load(waveglow_path)['model']
wave_glow = wave_glow.remove_weightnorm(wave_glow)
wave_glow.cuda().eval()
for m in wave_glow.modules():
if 'Conv' in str(type(m)):
setattr(m, 'padding_mode', 'zeros')
return wave_glow
def get_Tacotron2():
checkpoint_path = "tacotron2_statedict.pt"
checkpoint_path = os.path.join(os.path.join(
"Tacotron2", "pretrained_model"), checkpoint_path)
model = Tacotron2.model.Tacotron2(
Tacotron2.hparams.create_hparams()).cuda()
model.load_state_dict(torch.load(checkpoint_path)['state_dict'])
_ = model.cuda().eval()
return model
def get_D(alignment):
D = np.array([0 for _ in range(np.shape(alignment)[1])])
for i in range(np.shape(alignment)[0]):
max_index = alignment[i].tolist().index(alignment[i].max())
D[max_index] = D[max_index] + 1
return D
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(x, (0, length - x.shape[0]),
mode='constant',
constant_values=PAD)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(x, (0, max_len - np.shape(x)[0]),
mode='constant',
constant_values=PAD)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
def pad(input_ele, mel_max_length=None):
if mel_max_length:
out_list = list()
max_len = mel_max_length
for i, batch in enumerate(input_ele):
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len-batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
else:
out_list = list()
max_len = max([input_ele[i].size(0)for i in range(len(input_ele))])
for i, batch in enumerate(input_ele):
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len-batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
def load_data(txt, mel, model):
character = text.text_to_sequence(txt, hparams.text_cleaners)
character = torch.from_numpy(np.stack([np.array(character)])).long().cuda()
text_length = torch.Tensor([character.size(1)]).long().cuda()
mel = torch.from_numpy(np.stack([mel.T])).float().cuda()
max_len = mel.size(2)
output_length = torch.Tensor([max_len]).long().cuda()
inputs = character, text_length, mel, max_len, output_length
with torch.no_grad():
[_, mel_tacotron2, _, alignment], cemb = model.forward(inputs)
alignment = alignment[0].cpu().numpy()
cemb = cemb[0].cpu().numpy()
D = get_D(alignment)
D = np.array(D)
mel_tacotron2 = mel_tacotron2[0].cpu().numpy()
return mel_tacotron2, cemb, D
def load_data_from_tacotron2(txt, model):
character = text.text_to_sequence(txt, hparams.text_cleaners)
character = torch.from_numpy(np.stack([np.array(character)])).long().cuda()
with torch.no_grad():
[_, mel, _, alignment], cemb = model.inference(character)
alignment = alignment[0].cpu().numpy()
cemb = cemb[0].cpu().numpy()
D = get_D(alignment)
D = np.array(D)
mel = mel[0].cpu().numpy()
return mel, cemb, D