-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgenerate.py
161 lines (134 loc) · 5.65 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import sys
import time
import warnings
from pathlib import Path
from typing import Optional
import lightning as L
import torch
from lit_llama import LLaMA, Tokenizer
from lit_llama.utils import EmptyInitOnDevice, lazy_load
@torch.no_grad()
def generate(
model: torch.nn.Module,
idx: torch.Tensor,
max_new_tokens: int,
max_seq_length: int,
temperature: float = 1.0,
top_k: Optional[int] = None,
eos_id: Optional[int] = None,
) -> torch.Tensor:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
idx: Tensor of shape (T) with indices of the prompt sequence.
max_new_tokens: The number of new tokens to generate.
max_seq_length: The maximum sequence length allowed.
temperature: Scales the predicted logits by 1 / temperature
top_k: If specified, only sample among the tokens with the k highest probabilities
eos_id: If specified, stop generating any more token once the <eos> token is triggered
"""
# create an empty tensor of the expected final shape and fill in the current tokens
T = idx.size(0)
T_new = T + max_new_tokens
empty = torch.empty(T_new, dtype=idx.dtype, device=idx.device)
empty[:T] = idx
idx = empty
# generate max_new_tokens tokens
for t in range(T, T_new):
# ignore the not-filled-yet tokens
idx_cond = idx[:t]
# if the sequence context is growing too long we must crop it at max_seq_length
idx_cond = idx_cond if T <= max_seq_length else idx_cond[-max_seq_length:]
# forward
logits = model(idx_cond.view(1, -1))
logits = logits[0, -1] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[[-1]]] = -float("Inf")
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
# concatenate the new generation
idx[t] = idx_next
# if <eos> token is triggered, return the output (stop generation)
if idx_next == eos_id:
return idx[:t + 1] # include the EOS token
return idx
def main(
prompt: str = "Hello, my name is",
*,
num_samples: int = 1,
max_new_tokens: int = 50,
top_k: int = 200,
temperature: float = 0.8,
checkpoint_path: Optional[Path] = None,
tokenizer_path: Optional[Path] = None,
model_size: str = "7B",
quantize: Optional[str] = None,
) -> None:
"""Generates text samples based on a pre-trained LLaMA model and tokenizer.
Args:
prompt: The prompt string to use for generating the samples.
num_samples: The number of text samples to generate.
max_new_tokens: The number of generation steps to take.
top_k: The number of top most probable tokens to consider in the sampling process.
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
samples.
checkpoint_path: The checkpoint path to load.
tokenizer_path: The tokenizer path to load.
model_size: The model size to load.
quantize: Whether to quantize the model and using which method:
``"llm.int8"``: LLM.int8() mode,
``"gptq.int4"``: GPTQ 4-bit mode.
"""
if not checkpoint_path:
checkpoint_path = Path(f"./checkpoints/lit-llama/{model_size}/lit-llama.pth")
if not tokenizer_path:
tokenizer_path = Path("./checkpoints/lit-llama/tokenizer.model")
assert checkpoint_path.is_file(), checkpoint_path
assert tokenizer_path.is_file(), tokenizer_path
fabric = L.Fabric(accelerator="cuda", devices=1)
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
print("Loading model ...", file=sys.stderr)
t0 = time.time()
with EmptyInitOnDevice(
device=fabric.device, dtype=dtype, quantization_mode=quantize
):
model = LLaMA.from_name(model_size)
checkpoint = lazy_load(checkpoint_path)
model.load_state_dict(checkpoint)
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)
model.eval()
model = fabric.setup_module(model)
tokenizer = Tokenizer(tokenizer_path)
encoded_prompt = tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device)
L.seed_everything(1234)
t0 = time.perf_counter()
for _ in range(num_samples):
y = generate(
model,
encoded_prompt,
max_new_tokens,
model.config.block_size, # type: ignore[union-attr,arg-type]
temperature=temperature,
top_k=top_k,
)
print(tokenizer.decode(y))
t = time.perf_counter() - t0
print(f"\n\nTime for inference: {t:.02f} sec total, {num_samples * max_new_tokens / t:.02f} tokens/sec", file=sys.stderr)
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr)
if __name__ == "__main__":
from jsonargparse import CLI
torch.set_float32_matmul_precision("high")
warnings.filterwarnings(
# Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31
"ignore",
message="ComplexHalf support is experimental and many operators don't support it yet"
)
warnings.filterwarnings(
# Triggered in bitsandbytes/autograd/_functions.py:298
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization",
)
CLI(main)